• 제목/요약/키워드: Cost Reference Particle Filter (CRPF)

검색결과 4건 처리시간 0.019초

A Target Tracking Based on Bearing and Range Measurement With Unknown Noise Statistics

  • Lim, Jaechan
    • Journal of Electrical Engineering and Technology
    • /
    • 제8권6호
    • /
    • pp.1520-1529
    • /
    • 2013
  • In this paper, we propose and assess the performance of "H infinity filter ($H_{\infty}$, HIF)" and "cost reference particle filter (CRPF)" in the problem of tracking a target based on the measurements of the range and the bearing of the target. HIF and CRPF have the common advantageous feature that we do not need to know the noise statistics of the problem in their applications. The performance of the extended Kalman filter (EKF) is also compared with that of the proposed filters, but the noise information is perfectly known for the applications of the EKF. Simulation results show that CRPF outperforms HIF, and is more robust because the tracking of HIF diverges sometimes, particularly when the target track is highly nonlinear. Interestingly, when the tracking of HIF diverges, the tracking of the EKF also tends to deviate significantly from the true track for the same target track. Therefore, CRPF is very effective and appropriate approach to the problems of highly nonlinear model, especially when the noise statistics are unknown. Nonetheless, HIF also can be applied to the problem of timevarying state estimation as the EKF, particularly for the case when the noise statistcs are unknown. This paper provides a good example of how to apply CRPF and HIF to the estimation of dynamically varying and nonlinearly modeled states with unknown noise statistics.

노이즈 불확실성하에서의 확장칼만필터의 변종들과 코스트 레퍼런스 파티클필터를 이용한 표적추적 성능비교 (Performance Comparison of Various Extended Kalman Filter and Cost-Reference Particle Filter for Target Tracking with Unknown Noise)

  • 신명인;홍우영
    • 한국시뮬레이션학회논문지
    • /
    • 제27권3호
    • /
    • pp.99-107
    • /
    • 2018
  • 본 논문에서는 비선형성을 가지는 측정방정식의 상태값을 효과적으로 추정할 수 있는 확장칼만필터(Extended Kalman Filter/EKF)와 확장칼만필터의 변종들 그리고 코스트 레퍼런스 파티클필터(Cost-Reference Particle Filter/CRPF)를 이용하여 이차원 공간에서 표적추적 성능에 관하여 연구한다. 확장칼만필터의 변종으로 분산점칼만필터(Unscented Kalman Filter/UKF), 중심차분칼만필터(Central Difference Kalman Filter/CDKF), 제곱근 분산점칼만필터(Square Root Unscented Kalman Filter/SR-UKF) 그리고 제곱근 중심차분칼만필터(Square Root Central Difference Kalman Filter/SR-CDKF)를 소개한다. 본 연구에서는 노이즈가 불확실한 표적에 대하여 몬테카를로 시뮬레이션 기법을 이용하여 각 필터들의 평균제곱오차(Mean Square Error/MSE)를 계산하였다. 시뮬레이션 결과 확장칼만필터의 변종들 중에서 제곱근 중심차분칼만필터가 속도와 성능 면에서 가장 우수한 결과를 보여주었다. 코스트 레퍼런스 파티클 필터는 확장칼만필터와 다르게 노이즈의 확률 분포를 알 필요가 없다는 유리한 특성을 가지고 있으며 시뮬레이션 결과 제곱근 중심차분칼만필터보다 처리속도 및 정확도 면에서 우수한 결과를 보여주었다.

Fault Diagnosis Method Based on High Precision CRPF under Complex Noise Environment

  • Wang, Jinhua;Cao, Jie
    • Journal of Information Processing Systems
    • /
    • 제16권3호
    • /
    • pp.530-540
    • /
    • 2020
  • In order to solve the problem of low tracking accuracy caused by complex noise in the fault diagnosis of complex nonlinear system, a fault diagnosis method of high precision cost reference particle filter (CRPF) is proposed. By optimizing the low confidence particles to replace the resampling process, this paper improved the problem of sample impoverishment caused by the sample updating based on risk and cost of CRPF algorithm. This paper attempts to improve the accuracy of state estimation from the essential level of obtaining samples. Then, we study the correlation between the current observation value and the prior state. By adjusting the density variance of state transitions adaptively, the adaptive ability of the algorithm to the complex noises can be enhanced, which is expected to improve the accuracy of fault state tracking. Through the simulation analysis of a fuel unit fault diagnosis, the results show that the accuracy of the algorithm has been improved obviously under the background of complex noise.

Mixture Filtering Approaches to Blind Equalization Based on Estimation of Time-Varying and Multi-Path Channels

  • Lim, Jaechan
    • Journal of Communications and Networks
    • /
    • 제18권1호
    • /
    • pp.8-18
    • /
    • 2016
  • In this paper, we propose a number of blind equalization approaches for time-varying andmulti-path channels. The approaches employ cost reference particle filter (CRPF) as the symbol estimator, and additionally employ either least mean squares algorithm, recursive least squares algorithm, or $H{\infty}$ filter (HF) as a channel estimator such that they are jointly employed for the strategy of "Rao-Blackwellization," or equally called "mixture filtering." The novel feature of the proposed approaches is that the blind equalization is performed based on direct channel estimation with unknown noise statistics of the received signals and channel state system while the channel is not directly estimated in the conventional method, and the noise information if known in similar Kalman mixture filtering approach. Simulation results show that the proposed approaches estimate the transmitted symbols and time-varying channel very effectively, and outperform the previously proposed approach which requires the noise information in its application.