• Title/Summary/Keyword: Cost Propagation Algorithm

Search Result 62, Processing Time 0.028 seconds

Development of Third-Party Damage Monitoring System for Natural Gas Pipeline

  • Shin, Seung-Mok;Suh, Jin-Ho;Im, Jae-Sung;Kim, Sang-Bong;Yoo, Hui-Ryong
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.10
    • /
    • pp.1423-1430
    • /
    • 2003
  • In this paper, we develop a real time monitoring system to detect third-party damage on natural gas pipeline. When the damage due to third-party incidents causes an immediate rupture, the developed on-line monitoring system can help reducing the sequences of event at once. Moreover, since many third-party incidents cause damage that does not lead to immediate rupture but can grow with time, the developed on-line monitoring system can execute a significant role in reducing many third-party damage incidents. Also, when the damage is given at a point on natural gas pipeline, the acoustic wave is propagated very fast about 421.3 m/s. Therefore, the data processing time should be very short in order to detect precisely the impact position. Generally, the pipeline is laid under ground or sea and the length is very long. So a wireless data communication method is recommendable and the sensing positions are limited by laid circumstance and setting cost of sensors. The calculation and monitoring software is developed by an algorithm using the propagation speed of acoustic wave and data base system based on wireless communication and DSP systems. The developed monitoring system is examined by field testing at Balan pilot plant, KOGAS being done in order to demonstrate its validity through reactive detection of third-party contact with pipelines. Furthermore, the development system was set at the practical pipelines such as an offshore pipeline between two islands Yul-Do and Youngjong-Do, and a land branch of Pyoungtaek, Korea and it has been operating in real time.

Using Artificial Neural Network for Software Development Efforts Estimation on (인공신경망을 이용한 소프트웨어 개발공수 예측모델에 관한 연구)

  • Jeon, Eung-Seop
    • The Transactions of the Korea Information Processing Society
    • /
    • v.3 no.1
    • /
    • pp.211-224
    • /
    • 1996
  • In the research area of estimation of the software development efforts, a number of researches have been accomplished in order to control the costs and to make software more competitive. However, most of them were restricted to the functional algorithm models or the statistic models. Moreover, since they are dealing with the cases of foreign countries, the results are hard to apply directly to the domestic environment for the efficient project management because of lack of accuracy, fitness, flexibility and portability. Therefore, it is appropriate to suggest and propose a new approach supported by artificial neural network which is composed of back propagation and feel-forward algorithms to improve the exactness of the efforts estimation and to advance practical uses. In this study, the artificial neural network approach is used to model the software cost estimation and the results are compared with the revised COCOMO and the multiregression model in order to validate the superiority of the model.

  • PDF

A Distance Estimation Scheme Based on WLAN RF Properties for Localization of Mobile Terminals (WLAN 전파특성 기반 실내 위치설정을 위한 이동단말의 거리추정 기법)

  • Yang, Jeong-Woo;An, Gae-Il;Kim, Shin-Hyo;Chung, Byung-Ho;Kim, Tae-Yeon;Pyun, Ki-Hyun;Cho, Gi-Hwan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39B no.7
    • /
    • pp.449-458
    • /
    • 2014
  • In the context-aware services, localization is an important technical element. Due to the easy to use and low cost, it was widely enabled with RF properties such as RSSI. However, RSSI is known to be not appropriated for indoor localization, because it tends to show big variance in time and is greatly effected with the multipath. This paper proposes a distance estimation process and its constituted methods for indoor localization, by making use of the other WLAN's RF property, CSI(Channel State Information). Firstly we define a comprehensive localization process, and suggest a calibration algorithm of environment factors in the path loss propagation model. Then, by implementing them with a commercial WLAN module, an the proposed process and methods are evaluated in terms of usefulness.

A Study on the Corona Discharge Simulation Using FEM-FCT Method (FEM-FCT 기법을 이용한 코로나 방전 시뮬레이션에 대한 연구)

  • Min, Ung-Gi;Kim, Hyeong-Seok;Lee, Seok-Hyeon;Han, Song-Yeop
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.48 no.3
    • /
    • pp.200-208
    • /
    • 1999
  • In this paper, the corona discharge is analyzed by Finite Element Method(FEM) combined with Flux-corrected Transport(FCT) algorithm. In the previous papers, Finite Difference Method(FDM) combined with FCT was used. Usually in the FDM, the regionof interest is discretized with structured grids. But to refine local regions with same resolution, much more grids are required for the structured grids than for unstructured grids than for unstructured grids. Therefore, we propose the FEM-FCT method to simulate the corona discharge. The proposed method has good flexibility in model shape and can reduce the computational cost by the local refinement where the physical quantities have steep gradients. Using the proposed method, we study the streamer growth of parallel plate electrodes which is initiated by the low and high perturbation density. We find that the varying the initial density of perturbation has very little effect on the streamer propagation. And the corona discharge of the rod-to-plane electrode is simulated. On the surface of the rod electrode, the high concentration of the electric field gives rise to many number of streamer seeds. The strong axial streamer propagate to the plane electrode. The weaker non-axial streamer repel each other and stop growing more. The results are very similar to those of the papers which used the FDM-FCT method on structured grids. Thus we can conclude that the proposed FEM-FCT method is more efficient than the conventional FDM-FCT method by virtue of the reduction in computational grids number.

  • PDF

A study of the train traffic optimal control system in a circular metro line (도시형 순환 열차에서 운전 최적제어 시스템에 관한 연구)

  • Hong, Hyo-Sik;Ryu, Kwang-Gyun;Song, Noon-Suck
    • Proceedings of the KSR Conference
    • /
    • 2003.10c
    • /
    • pp.236-246
    • /
    • 2003
  • This paper is implemented a control algorithm in order to be stable and minimized to entire train traffic system at delayed case. Signal ing system is described wi th algebraic equations given for train headway, Discrete-event simulation principles are reviewed and a demonstration block signaling model using the technique is implemented. Train congestion at station entrance for short headway operation is demonstrated and the propagation of delays along a platform of trains from any imposed delay to the leading train is also shown. A rail way signaling system is by nature a distributed operation with event triggered at discrete intervals. Although the train kinematic variables of position, velocity, and acceleration are continually changing, the changes are triggered when the trains pass over section boundaries and arrive at signals and route switches. This paper deals with linear-mode1ing, stability and optimal control for the traffic on such metro line of the model is reconstructed in order to adapt the circuits. This paper propose optimal control laws wi th state feedback ensuring the stability of the modeled system for circuits. Simulation results show the benefit to be expected from an efficient traffic control. The main results are summarized as follows: 1. In this paper we develop a linear model describing the traffic for both loop lines, two state space equations have been analyzed. The first one is adapted to the situation where a complete nominal time schedule is available while second one is adapted when only the nominal time interval between trains is known, in both cases we show the unstability of the traffic when the proceeding train is delayed following properties, - They are easily implemented at law cost on existing lines. - They ensure the exponetial stability of loop system. 2. These control laws have been tested on a traffic simulation software taking into the non-linearites and the physical constraints on a metro line. By means of simulation, the efficiency of the proposed optimal control laws are shown.

  • PDF

Timestamps based sequential Localization for Linear Wireless Sensor Networks (선형 무선 센서 네트워크를 위한 시각소인 기반의 순차적 거리측정 기법)

  • Park, Sangjun;Kang, Jungho;Kim, Yongchul;Kim, Young-Joo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.10
    • /
    • pp.1840-1848
    • /
    • 2017
  • Linear wireless sensor networks typically construct a network topology with a high reliability through sequential 1:1 mapping among sensor nodes, so that they are used in various surveillance applications of major national infrastructures. Most existing techniques for identifying sensor nodes in those networks are using GPS, AOA, and RSSI mechanisms. However, GPS or AOA based node identification techniques affect the size or production cost of the nodes so that it is not easy to construct practical sensor networks. RSSI based techniques may have a high deviation regrading location identification according to propagation environments and equipment quality so that complexity of error correction algorithm may increase. We propose a timestamps based sequential localization algorithm that uses transmit and receive timestamps in a message between sensor nodes without using GPS, AOA, and RSSI techniques. The algorithms for distance measurement between each node are expected to measure distance within up to 1 meter in case of an crystal oscillator of 300MHz or more.

A Prediction of N-value Using Artificial Neural Network (인공신경망을 이용한 N치 예측)

  • Kim, Kwang Myung;Park, Hyoung June;Goo, Tae Hun;Kim, Hyung Chan
    • The Journal of Engineering Geology
    • /
    • v.30 no.4
    • /
    • pp.457-468
    • /
    • 2020
  • Problems arising during pile design works for plant construction, civil and architecture work are mostly come from uncertainty of geotechnical characteristics. In particular, obtaining the N-value measured through the Standard Penetration Test (SPT) is the most important data. However, it is difficult to obtain N-value by drilling investigation throughout the all target area. There are many constraints such as licensing, time, cost, equipment access and residential complaints etc. it is impossible to obtain geotechnical characteristics through drilling investigation within a short bidding period in overseas. The geotechnical characteristics at non-drilling investigation points are usually determined by the engineer's empirical judgment, which can leads to errors in pile design and quantity calculation causing construction delay and cost increase. It would be possible to overcome this problem if N-value could be predicted at the non-drilling investigation points using limited minimum drilling investigation data. This study was conducted to predicted the N-value using an Artificial Neural Network (ANN) which one of the Artificial intelligence (AI) method. An Artificial Neural Network treats a limited amount of geotechnical characteristics as a biological logic process, providing more reliable results for input variables. The purpose of this study is to predict N-value at the non-drilling investigation points through patterns which is studied by multi-layer perceptron and error back-propagation algorithms using the minimum geotechnical data. It has been reviewed the reliability of the values that predicted by AI method compared to the measured values, and we were able to confirm the high reliability as a result. To solving geotechnical uncertainty, we will perform sensitivity analysis of input variables to increase learning effect in next steps and it may need some technical update of program. We hope that our study will be helpful to design works in the future.

Computational estimation of the earthquake response for fibre reinforced concrete rectangular columns

  • Liu, Chanjuan;Wu, Xinling;Wakil, Karzan;Jermsittiparsert, Kittisak;Ho, Lanh Si;Alabduljabbar, Hisham;Alaskar, Abdulaziz;Alrshoudi, Fahed;Alyousef, Rayed;Mohamed, Abdeliazim Mustafa
    • Steel and Composite Structures
    • /
    • v.34 no.5
    • /
    • pp.743-767
    • /
    • 2020
  • Due to the impressive flexural performance, enhanced compressive strength and more constrained crack propagation, Fibre-reinforced concrete (FRC) have been widely employed in the construction application. Majority of experimental studies have focused on the seismic behavior of FRC columns. Based on the valid experimental data obtained from the previous studies, the current study has evaluated the seismic response and compressive strength of FRC rectangular columns while following hybrid metaheuristic techniques. Due to the non-linearity of seismic data, Adaptive neuro-fuzzy inference system (ANFIS) has been incorporated with metaheuristic algorithms. 317 different datasets from FRC column tests has been applied as one database in order to determine the most influential factor on the ultimate strengths of FRC rectangular columns subjected to the simulated seismic loading. ANFIS has been used with the incorporation of Particle Swarm Optimization (PSO) and Genetic algorithm (GA). For the analysis of the attained results, Extreme learning machine (ELM) as an authentic prediction method has been concurrently used. The variable selection procedure is to choose the most dominant parameters affecting the ultimate strengths of FRC rectangular columns subjected to simulated seismic loading. Accordingly, the results have shown that ANFIS-PSO has successfully predicted the seismic lateral load with R2 = 0.857 and 0.902 for the test and train phase, respectively, nominated as the lateral load prediction estimator. On the other hand, in case of compressive strength prediction, ELM is to predict the compressive strength with R2 = 0.657 and 0.862 for test and train phase, respectively. The results have shown that the seismic lateral force trend is more predictable than the compressive strength of FRC rectangular columns, in which the best results belong to the lateral force prediction. Compressive strength prediction has illustrated a significant deviation above 40 Mpa which could be related to the considerable non-linearity and possible empirical shortcomings. Finally, employing ANFIS-GA and ANFIS-PSO techniques to evaluate the seismic response of FRC are a promising reliable approach to be replaced for high cost and time-consuming experimental tests.

Development of A Network loading model for Dynamic traffic Assignment (동적 통행배정모형을 위한 교통류 부하모형의 개발)

  • 임강원
    • Journal of Korean Society of Transportation
    • /
    • v.20 no.3
    • /
    • pp.149-158
    • /
    • 2002
  • For the purpose of preciously describing real time traffic pattern in urban road network, dynamic network loading(DNL) models able to simulate traffic behavior are required. A number of different methods are available, including macroscopic, microscopic dynamic network models, as well as analytical model. Equivalency minimization problem and Variation inequality problem are the analytical models, which include explicit mathematical travel cost function for describing traffic behaviors on the network. While microscopic simulation models move vehicles according to behavioral car-following and cell-transmission. However, DNL models embedding such travel time function have some limitations ; analytical model has lacking of describing traffic characteristics such as relations between flow and speed, between speed and density Microscopic simulation models are the most detailed and realistic, but they are difficult to calibrate and may not be the most practical tools for large-scale networks. To cope with such problems, this paper develops a new DNL model appropriate for dynamic traffic assignment(DTA), The model is combined with vertical queue model representing vehicles as vertical queues at the end of links. In order to compare and to assess the model, we use a contrived example network. From the numerical results, we found that the DNL model presented in the paper were able to describe traffic characteristics with reasonable amount of computing time. The model also showed good relationship between travel time and traffic flow and expressed the feature of backward turn at near capacity.

An Improved CBRP using Secondary Header in Ad-Hoc network (Ad-Hoc 네트워크에서 보조헤더를 이용한 개선된 클러스터 기반의 라우팅 프로토콜)

  • Hur, Tai-Sung
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.9 no.1
    • /
    • pp.31-38
    • /
    • 2008
  • Ad-Hoc network is a network architecture which has no backbone network and is deployed temporarily and rapidly in emergency or war without fixed mobile infrastructures. All communications between network entities are carried in ad-hoc networks over the wireless medium. Due to the radio communications being extremely vulnerable to propagation impairments, connectivity between network nodes is not guaranteed. Therefore, many new algorithms have been studied recently. This study proposes the secondary header approach to the cluster based routing protocol (CBRP). The primary header becomes abnormal status so that the primary header can not participate in the communications between network entities, the secondary header immediately replaces the primary header without selecting process of the new primary header. This improves the routing interruption problem that occurs when a header is moving out from a cluster or in the abnormal status. The performances of proposed algorithm ACBRP(Advanced Cluster Based Routing Protocol) are compared with CBRP. The cost of the primary header reelection of ACBRP is simulated. And results are presented in order to show the effectiveness of the algorithm.

  • PDF