• Title/Summary/Keyword: Cosmid

Search Result 60, Processing Time 0.023 seconds

Molecular Cloning of nifH, D from Frankia EuIK1 Strain, A Symbiont of Elaeagnus umbellata Root Nodules (보리수나무 뿌리혹 공생균주인 Frankia EuIK1의 nifH, D클로닝)

  • Kim, Ho-Bang;Kim, Chun-Ho;Song, Seun-Dal;An, Chung-Sun
    • Korean Journal of Microbiology
    • /
    • v.32 no.4
    • /
    • pp.258-263
    • /
    • 1994
  • Genomic Southern hybridization of Frankia EuIKl strain, a nitrogen fixing symbiont of Elaeagnus umbellate root nodules, with nifH,D of K. pneumoniae as a probe, showed that 3.2 Kb and 5.5 Kb of BamHI fragments and 15 Kb PstI fragment were strongly hybridized with the probe, indicating nifH,D are located on these fragments. Using the same probe, one clone(pEuNIF) was isolated from the genomic library constructed into pWE15 cosmid vector by colony hybridization. The 3.2 Kb and 5.5 Kb BamHI fragments of this clone were hybridized with the same probe and this result corresponds to the genomic Southern hybridization data. However, using nifH of Frankia FaCl strain as a probe, only the 3.2 Kb BamHI fragment showed hybridization signal. Amino acid sequence deduced from nucleotide sequence of 3' terminus of the 3.2 Kb and 5' terminus of the 5.5 Kb fragments showed that the former was highly homologous with that of ArI3 nifD from 182nd to 240th amino acids, while the latter was from 241st to 282nd amino acids. These results show that nifH and partial nifD sequences are located on the 3.2 Kb fragment and residual sequences of nifH on the 5.5 Kb fragment which is contiguous to the 3.2 Kb fragment.

  • PDF

Identification of a host range determinant from Ralstonia solancearum race 3

  • Yeonhwa Jeong;Lee, Seungdon;Ingyu Hwang
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2003.10a
    • /
    • pp.71.2-71
    • /
    • 2003
  • Ralstonia solancearum infects many solanaceous plants, however race 3 infects only potato and tomato weakly. To identify genes responsible for race specificity of R. solanacearum, we mobilized genomic library of LSD2029 (race 3) into LSD341 (race 1) and inoculated 1,000 transconjugants into hot pepper. One transconjugant that did not induce wilt symptom in hot pepper was isolated. We found that a cosmid clone, pRSl, conferred avirulence to LSD341. By deletion and mutational analyses of pRSl, we found the 0.9-kb PstI/Hindlll fragment carries avirulence functions. We sequenced the fragment and identified one possible open reading frame, a rsal gene, possibly encoding 110 amino acids. The rsal was preceded with a plant-inducible promoter (PIP) box, indicating that the gene might be regulated by HrpB. Interestingly, the promoter region of the rsal homolog in the strain GM11000 (race 1) did not have the PIP box. Rsal did not show any significant homologies with proteins in the database, indicating th e protein is different from the previously reported avirulence proteins. When we mutated the rsal gene by marker-exchange in LSD2029, the mutant was less virulent in potato.

  • PDF

Functional pathogenomics of Burkhozderia glumae (oral)

  • Kim, Jinwoo;Kim, Suhyun;Yongsung Kang;Jang, Ji-Youn;Kim, Jung-Gun;Lim, Jae-Yoon;Kim, Minkyun;Ingyu Hwang
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2003.10a
    • /
    • pp.66.1-66
    • /
    • 2003
  • The aim of this study was to characterize the interactions of rice and Burkholderia glumae, a causal agent of bacterial grain rot of rice, at molecular levels using whole genomic sequences and to identify genes important for pathogenicity and symptom development. To do these, we sequenced whole genome of the bacterium and constructed cosmid clone profiles. We generated pools of mutants using various transposons and determined mutation sites by sequencing rescued plasmids. We focused on studying toxoflavin biosynthetic genes, quorum sensing regulation, and Hrp type III protein secretion systems. We found that two possible operons consisting of five genes are involved in toxoflavin biosynthesis and their expression is regulated by quorum sensing and LysR-type regulator, ToxR. We have isolated the nn PAI of B. glumae and characterized by mutational analyses. The hrp cluster resembled most the putative Type III secretion systems of B. pseudomallei, which is the causative agent of melioidosis, a serious disease of man and animals. The Hrp PAI core region showed high similarity to that of Ralstonia solanacearum and Xanthomonas campestris, however some aspects were dissimilar.

  • PDF

Isolation and Characterization of the Biosynthetic Gene Clusters for Aminoglycoside Antibiotics

  • Jung Yong-Gyun;Jo You-Young;Hyun Chang-Gu;Lee In Hyung;Yang Young-Ye1l;Suh Joo-Won
    • Proceedings of the Microbiological Society of Korea Conference
    • /
    • 2001.11a
    • /
    • pp.146-156
    • /
    • 2001
  • The biosynthetic gene clusters for bluensomycin and spectinomycin were isolated and characterized from the bluensomycin producer, Streptomyces bluensis ATCC27420 and the spectinomycin producer, Streptomyces spectabilis ATCC27741, respectively. PCR primers were designed specifically to amplify a segment of dTDP-glucose synthase gene based on its conserved sequences of several actinomycete strains. By screening cosmid libraries using amplified PCR fragments, 30-kb and 45-kb DNA fragments were isolated from Streptomyces bluensis and Streptomyces spectabilis, respectively. Sequencing analysis of them revealed that each contains 15 open reading frames (ORFs). Some of these ORFs were turned out to be antibiotic resistance genes (blmA and speN), dTDP-glucose synthase genes (blmD and spcD), and dTDP-D-glucose 4,6-dehydratase genes (blmE and spcE), suggesting that the blm and spec gene clusters are likely involved in the biosynthesis of bluensomycin and spectinomycin, respectively.

  • PDF

Characterization of Excision Repair Genes Related to Damaged DNA Repair from Eukaryotic Cells

  • Choi, In-Soon;Jin, Yong-Hwan;Park, Sang-Dai
    • Environmental Mutagens and Carcinogens
    • /
    • v.17 no.1
    • /
    • pp.1-6
    • /
    • 1997
  • The RAD4 gene of Saccharomyces cerevisiae is essential for the incision step of UV-induced excision repair. A yeast RAD4 gene has been previously isolated by functional complementation. In order to identify the RAD4 homologous gene from fungus Coprinus cinereus, we have constructed cosmid libraries from electrophoretically separated chromosomes of the C. cinereus. The 13 C. cinereus chromosomes were resolved by pulse-field gel electrophoresis, hybridized with S. cerevisiae RAD4 DNA, and then isolated homologous C. cinereus chromosome. The insert DNA of the RAD4 homolog was contained 3.2 kb. Here, we report the partial cloning and characterization of fungus C. cinereus homolog of yeast RAD4 gene. Southern blot analysis confirmed that C. cinereus contains the sequence homologous DNA to RAD4 gene and this gene exists as a single copy in C. cinereus genome. When total RNA isolated from C. cinereus cells was hybridized with the 1.2 kb PvuII DNA fragment of the S. cerevisiae RAD4 gene, a 2.5 kb of transcript was detected. The level of the transcript did not increase upon UV-irradiation, suggesting that the RAD4 homologous gene in C. cinereus is not UV-inducible.

  • PDF

Cloning and Sequencing of the Gene Involved in Morphological Change of Zoogloea ramigera 115SLR

  • Lee, Sam-Pin;Kim, Tae-Rahk;Sinskey, Anthony-John
    • Journal of Microbiology and Biotechnology
    • /
    • v.10 no.2
    • /
    • pp.161-168
    • /
    • 2000
  • Plasmid pLEX3 isolated from the recombinant cosmid library of Zoogloea ramigera 115 was found to be responsible for the restoration of the rugose colony phenotype. To confirm the essential region responsible for the complementation, subclones were constructed from plasmid pLEX3 and transformed into mutant strain Z. ramigera 115SLR. The recombinant plasmids pLEX10 and pLEX11 were shown to complement the slime-forming property of Z. ramigera 115SLR. In a compositional analysis of the exopolysaccharides from Z. ramigera 115, Z. ramigera 115SLR, and Z. ramigera 115SLR harboring plasmid pLEX11, the exopolysaccharides showed a similar composition with glucose, galactose, and side chain groups. The complete nucleotide sequence of the 3.25kb genocim DNA insert in plasmid pLEX11 was determined and its analysis identified two open reading frames which could encode two proteins. The gene products derived form the two open reading frames were confirmed by and in vivo transcription using a T7-RNA polymerase. The ORF1 produced a 30 kDa protein, whereas the ORF2 was found responsible for the complementation of the morphological mutation and produced a 14 kDa protein. An in vivo gene expression of plasmid pTEX10 showed another open reading frame encoding a 50 kDa protein. The gene products form ORF1 and ORF2 are regarded as novel proteins which do not show any homology with other proteins.

  • PDF

Genome Organization and Transcription Response to Harvest of Two Metallothionein-Like Genes in Agaricus bisporus Fruiting Bodies

  • Eastwood, Daniel C.;Bains, Navdeep K.;Henderson, Janey;Burton, Kerry S.
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.5
    • /
    • pp.455-463
    • /
    • 2011
  • Metallothioneins are a class of small cysteine-rich proteins that have been associated with increased tolerance to metal and oxidative stresses in animals, plants, and fungi. We investigated a metallothionein-like (mt-like) gene shown previously to be upregulated in fruiting bodies of the fungus Agaricus bisporus in response to post-harvest storage. Analysis of an A. bisporus genomic DNA cosmid library identified two similar mt-like genes (met1 and met2) arranged as a bidirectional gene pair transcribed from the same promoter region. The promoter contained regulatory elements including 9 metal responsive elements and a CAAT box region 220 bp downstream of met1 that showed striking similarity to a feature in Coprinopsis cinerea mt-like gene promoters. Transcriptional analysis showed that both met genes are significantly and rapidly (within 3 hours) upregulated during post-harvest storage and expression is significantly greater in stipe and cap tissues compared with the gills. However, a strong directionality of the promoter was demonstrated, as transcript levels of met1 were at least two orders of magnitude greater than those of met2 in all samples tested.

Isolation of the Regulator Gene Responsible for Overproduction of Catalase A in $H_2O$$_2$-resistant Mutant of Streptomyces coelicolor

  • Hahn, Ji-Sook;Oh, So-Young;Keith F. Chater;Roe, Jung-Hye
    • Journal of Microbiology
    • /
    • v.38 no.1
    • /
    • pp.18-23
    • /
    • 2000
  • Streptomyces coelicolor produces three kinds of catalases to cope with oxidative stress and to allow normal differentiation. Catalase A is the major vegetative catalase which functions in removing hydrogen peroxide generated during the process of aerobic metabolism. To understand the regulatory mechanism of response against oxidative stress, hydrogen peroxide-resistant mutant (HR4O) was isolated from S. coelicolor J1501 following UV mutagenesis. The mutant overproduced catalase A more than 50-fo1d compared with the wild type. The mutation locus catRI was mapped closed to the mthB2 locus by genetic crossings. An ordered cosmid library of S. coelicolor encompassing the mthB2 locus was used to isolate the regulator gene (catR) which represses catalase overproduction when introduced into HR4O. A candidate catR gene was found to encode a Fur-like protein of 138 amino acids (15319 Da).

  • PDF

Molecular Cloning and Characterization of 58 kDa Chitinase Gene from Serratia marcescens KCTC 2172

  • Gal Sang Wan;Lee S. W.;Choi Y. J.
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.7 no.1
    • /
    • pp.38-42
    • /
    • 2002
  • A chitinase gene (pCHi58) encoding a 58 kDa chitinase was isolated from the Serratia marcescens KCTC 2172 cosmid library. The chitinase gene consisted of a 1686 bp open reading frame that encoded 562 amino acids. Escherichia coil harboring the pChi58 gene secreted a 58 kDa chitinase into the culture supernatant. The 58 kDa chitinase was purified using a chitin affinity column and mono-S column. A nucleotide and N-terminal amino acid sequence analysis showed that the 58 kDa chitinase had a leader peptide consisting of 23 amino acids which was cleaved prior to the 24th alanine. The 58 KDa chitinase exhibited a $98\%$ similarity to that of S. marcescens OMB 1466 in its nuclotide sequence. The chitinolytic patterns of the 58 kDa chitinase released N,N'-diacetyl chitobiose (NAG2) as the major hydrolysis end-product with a trace amount of N-acetylglucosamine. When a 4-methylumbellyferyl-N-acetylglucosamin monomer, dimmer, and tetramer were used as substrates, the 58 kDa chitinase did not digest the 4-Mu-NAG monomer $(analogue\;of\;NAG_2)$, thereby indicating that the 58 kDa chitinase was likely an endochitinase. The optimum reaction temperature and pH of the enzyme were $50^{\circ}C$ and 5.0, respectively.

Nucleotide sequence analysis of a second set of the polyketide synthase .betha.-ketoacyl synthase and chain length factor genes from the salinomycin-producing streptomyces albus

  • Hyun, Chang-Gu;Park, Kwan-Hyung;C.Richard Hutchinson;Suh, Joo-Won
    • Journal of Microbiology
    • /
    • v.35 no.1
    • /
    • pp.40-46
    • /
    • 1997
  • The pWHM220 cosmid with a 24-kb insert cloned from Streptomyces albus ATCC 21838 induces the biosynthesis of a polysther antibiotic similar to salinomycin in Streptomyces invidans. We have analyzed this region by DNA sequencing as well as Southern blot hybridization with type I and type II polyketide synthase (PKS) probes. Surprisingly, we found another set of type II SKS genes only 10-kb from the original PKS genes, salABCDE. The DNA sequence revealed two complete open reading frames (ORFs) named salB2 and salC2, and one partial ORF that does not resemble any known DNA or deduced protein sequence. The salC2 should code for chain length determining factor while the deduced amino acid sequence encoded by salB2 exhibits high similarity to .betha.-ketoacyl synthase from different PKS gene clusters. The highest identity was found for .betha.-keetoacyl synthases from S. argillaceus (MtmP. 59.1% identity), the mithramycin producer and from S. venezuelae ISP5230 (JadA, 52.3% identity), the jadomycin producer. The SalC2 protein clearly resembles its counterparts in order aromatic PKS gene clusters that are believed to influence the length of the polyketide chain. The highest identities observed were to that of S. argillaceus (MtmK, 62.3%) and S. venezuelae ISP 5230 (JadB, 55.1%) proteins, Moreover, the deduced amino acid sequences of the salB2 and salC2 products were 29.0% identical.

  • PDF