• Title/Summary/Keyword: Cosmic rays

Search Result 127, Processing Time 0.024 seconds

Test-bed of Total Ionizing Dose (TID) Test by Cosmic Rays for Metal Oxide Semiconductor Field Effect Transistor (MOSFET) (금속-산화막 반도체 전계효과 트랜지스터의 우주방사선에 의한 총이온화선량 시험을 위한 테스트 베드)

  • Sin, Gu-Hwan;Yu, Gwang-Seon;Gang, Gyeong-In;Kim, Hyeong-Myeong;Jeong, Seong-In
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.11
    • /
    • pp.84-91
    • /
    • 2006
  • Recently, all the electrical parts for satellite application are required more strong against cosmic rays, because spacecraft's life time and function are depending on the their conditions. Also, a TID effect test was undertaken with units and/or subsystems which are already assembled on the PCB in past time. However, it is very hard to know and analyze that some abnormal states are appeared after launch. Moreover, it is necessary to perform a test of TID effects based on the parts level for preparing preliminary data in cosmic rays. Therefore, this paper presents a test-bed to perform a TID effect test of Metal-Oxide Semiconductor Field Effect Transistor (MOSFET) which is a fundamental element for electronics.

STRONG INFLUENCE OF THE GALACTIC MAGNETIC FIELD ON THE PROPAGATION OF ULTRA-HIGH ENERGY COSMIC RAYS

  • KIM, JIHYUN;KIM, HANG BAE;RYU, DONGSU
    • Publications of The Korean Astronomical Society
    • /
    • v.30 no.2
    • /
    • pp.549-552
    • /
    • 2015
  • The galactic magnetic field (GMF) and the intergalactic magnetic field (IGMF) affect the propagation of ultra-high energy cosmic rays (UHECRs) from the source to us. Here we examine the influences of the GMF/IGFM and the dependence of their sky distribution on galactic latitude, b. We analyze the correlation between the arrival direction (AD) of UHECRs observed by the Pierre Auger Observatory and the large-scale structure of the universe in regions of sky divided by b. Specifically, we compare the AD distribution of observed UHECRs to that of mock UHECRs generated from a source model constructed with active galactic nuclei. Our source model has the smearing angle as a free parameter that reflects the deflection angle of UHECRs from the source. The results show that larger smearing angles are required for the observed distribution of UHECRs in lower galactic latitude regions. We obtain, for instance, a $1{\sigma}$ credible interval for smearing angle of $0^{\circ}{\leq}{\theta}_s{\leq}72^{\circ}$ at high galactic latitudes, $60^{\circ}$ < $\left|{b}\right|{\leq}90^{\circ}$, and of $75^{\circ}{\leq}{\theta}_s{\leq}180^{\circ}$, $-30^{\circ}{\leq}b{\leq}30^{\circ}$, at low galactic latitudes, respectively. The results show that the influence of the GMF is stronger than that of the IGMF. In addition, we can estimate the strength of GMFs by these values; if we assume that UHECRs would have heavier nuclei, the estimated strengths of GMF are consistent with the observational value of a few ${\mu}G$. More data from the future experiments may make UHECR astronomy possible.

Fermi Large Area Telescope Observations of the Dark Accelerator HESS J1745-303

  • Yeung, Paul
    • Journal of Astronomy and Space Sciences
    • /
    • v.33 no.4
    • /
    • pp.319-321
    • /
    • 2016
  • Reviewing the two MeV-GeV investigations in the field of the HESS J1745-303 performed using Fermi Large Area Telescope data, we confirmed that the emission peak comfortably coincides with 'Region A' in the TeV regime, which is the brightest part of this feature. The MeV-TeV spectrum can be precisely described by a single power-law. Also, recent investigation has shown that the MeV-GeV feature is elongated from 'Region A' toward the north-west, which is similar to the case of largescale atomic/molecular gas distribution.

Full spectrum estimation of helicopter background and cosmic gamma-ray contribution for airborne measurements

  • Lukas Kotik;Marcel Ohera
    • Nuclear Engineering and Technology
    • /
    • v.55 no.3
    • /
    • pp.1052-1060
    • /
    • 2023
  • The airborne radiation monitoring has been used in geophysics for more than forty years and now it also has its important role in emergency monitoring. The aircraft background and the cosmic gamma-rays contribute to the measured gamma spectrum on the aircraft board. This adverse effect should be eliminated before the data processing. The paper describes two semiparametric methods to estimate the full spectrum aircraft background and cosmic gamma-ray contribution from spectra measured at altitudes where terrestrial contribution is negligible. The methods only assume to know possible peak positions in spectra and their full width at half maximum, that can be easily obtained e.g. from terrestrial measurement. The methods were applied to real experimental data acquired on Mi-17 and Bell 412 helicopter boards. The IRIS airborne gamma-ray spectrometer, with 4×4 L NaI(Tl) crystals, produced by Pico Envirotec Inc., Canada, was used on helicopters' boards. To obtain valid estimate of the aircraft background and the cosmic contribution, the measurements over sea and large water areas were carried out. However, the satisfactory results over inland were also achieved comparing with those acquired over large water areas.

Image reconstruction algorithm for momentum dependent muon scattering tomography

  • JungHyun Bae;Rose Montgomery;Stylianos Chatzidakis
    • Nuclear Engineering and Technology
    • /
    • v.56 no.5
    • /
    • pp.1553-1561
    • /
    • 2024
  • Nondestructive radiography using cosmic ray muons has been used for decades to monitor nuclear reactor and spent nuclear fuel storage. Because nuclear fuel assemblies are highly dense and large, typical radiation probes such as x-rays cannot penetrate these target imaging objects. Although cosmic ray muons are highly penetrative for nuclear fuels as a result of their relatively high energy, the wide application of muon tomography is limited because of naturally low cosmic ray muon flux. This work presents a new image reconstruction algorithm to maximize the utility of cosmic ray muon in tomography applications. Muon momentum information is used to improve imaging resolution, as well as muon scattering angle. In this work, a new convolution was introduced known as M-value, which is a mathematical integration of two measured quantities: scattering angle and momentum. It captures the objects' quantity and density in a way that is easy to use with image reconstruction algorithms. The results demonstrate how to reconstruct images when muon momentum measurements are included in a typical muon scattering tomography algorithm. Using M-value improves muon tomography image resolution by replacing the scattering angle value without increasing computation costs. This new algorithm is projected to be a standard nondestructive radiography technique for spent nuclear fuel and nuclear material management.

LINEAR ANALYSIS OF PARKER-JEANS INSTABILITY WITH COSMIC-RAY

  • KUWABARA TAKUHITO;KO CHUNG-MING
    • Journal of The Korean Astronomical Society
    • /
    • v.37 no.5
    • /
    • pp.601-603
    • /
    • 2004
  • We present the results of the linear analysis for the Parker-Jeans instability in the magnetized gas disks including the effect of cosmic-ray diffusion along the magnetic field lines. We adopted an uni-formly rotating two temperature layered disk with a horizontal magnetic fields and solved the perturbed equations numerically. Fragmentation of gases takes place and filamentary structures are formed by the growth of the instability. Nagai et al. (1998) showed that the direction of filaments being formed by the Parker-Jeans instability depends on the strength of pressure outside the unperturbed gas disk. We found that at some range of external pressures the direction of filaments is also governed by the value of the diffusion coefficient of CR along the magnetic field lines k.

Heavy ion fragment beam test of Silicon Charge Detector

  • Kim, Mi-Yeong;Nam, Sin-U;Park, Na-Hui;Park, Il-Hong;Bok, Jeong-Beom;Yang, Jong-Man;Lee, Jae-Geum;Han, Ji-Hye;Hyeon, Hyo-Jeong
    • Bulletin of the Korean Space Science Society
    • /
    • 2004.04a
    • /
    • pp.100-100
    • /
    • 2004
  • Silicon Charge Detector is to measure the charge of incident cosmic-ray nuclei with a resolution of 0.2 charge unit for atomic number, Z=1-30 with energy range from 1 to 1000 TeV. It is one of detectors for CREAM (Cosmic Ray Energetics And Mass) experiment to test current models of source and acceleration mechanisms of ultra high energy cosmic rays. It's first flight will be with a NASA zero pressure balloon planned to be launched from McMurdo Station, Antarctica in December 2004. (omitted)

  • PDF

CONTRIBUTIONS TO THE COSMIC RAY FLUX ABOVE THE ANKLE: CLUSTERS OF GALAXIES

  • KANG HYESUNG;RACHEN JORG P.;BIERMANN PETER L.
    • Journal of The Korean Astronomical Society
    • /
    • v.29 no.spc1
    • /
    • pp.271-272
    • /
    • 1996
  • Assuming that particles can be accelerated to high energies via diffusive shock acceleration process at the accretion shocks formed by the infalling flow toward the clusters of galaxies, we have calculated the expected spectrum of high-energy protons from the cosmological ensemble of the cluster accretion shocks. The model with Jokipii diffusion limit could explain the observed cosmic ray spectrum near $10^{19}eV$ with reasonable parameters and models if about $10^{-4}$ of the infalling kinetic energy can be injected into the intergalactic space as the high energy particles.

  • PDF

The Propagation of Cosmic Ray in Protoplanetary Disks

  • Roh, Soonyoung;Fujii, Yuri I.;Inutsuka, Shu-ichiro;Suzuki, Takeru;Momose, Munetake
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.1
    • /
    • pp.72.4-73
    • /
    • 2016
  • For the development of magneto rotational instability, which drives mass accretion in protoplanetary disks, sufficient ionization degree is needed. Cosmic rays are believed to be one of the dominant ionization sources for protoplanetary disk gas. In previous studies, ionization rates are computed by considering the effect of attenuation of the cosmic ray (CR) intensity as a function of column density in an unmagnetized cloud. However, in reality particles should sweep up larger column density to reach at the midplane of disk due to their gyromotion. In this study, we investigate the propagation of CR protons in a protoplanetary disk by solving transport and energy loss equations. We discuss the change in CR intensity due to magnetic field in a protoplanetary disk.

  • PDF