• 제목/요약/키워드: Cosmic Radiation

검색결과 136건 처리시간 0.021초

LOCAL ANOMALIES AROUND THE THIRD PEAK IN THE CMB ANGULAR POWER SPECTRUM OF WMAP 7-YEAR DATA

  • Ko, Kyeong Yeon;Park, Chan-Gyung;Hwang, Jai-Chan
    • 천문학회지
    • /
    • 제46권2호
    • /
    • pp.75-91
    • /
    • 2013
  • We estimate the power spectra of the cosmic microwave background radiation (CMB) temperature anisotropy in localized regions of the sky using the Wilkinson Microwave Anisotropy Probe (WMAP) 7-year data. We find that the north and south hat regions at high Galactic latitude ($|b|{\geq}30^{\circ}C$) show an anomaly in the power spectrum amplitude around the third peak, which is statistically significant up to 3. We try to explain the cause of the observed anomaly by analyzing the low Galactic latitude ($|b|$ < $30^{\circ}C$) regions where the galaxy contamination is expected to be stronger, and the regions weakly or strongly dominated byWMAP instrument noise. We also consider the possible effect of unresolved radio point sources. We find another but less statistically significant anomaly in the low Galactic latitude north and south regions whose behavior is opposite to the one at high latitude. Our analysis shows that the observed north-south anomaly at high latitude becomes weaker on regions with high number of observations (weak instrument noise), suggesting that the anomaly is significant at sky regions that are dominated by the WMAP instrument noise. We have checked that the observed north-south anomaly has weak dependences on the bin-width used in the power spectrum estimation, and on the Galactic latitude cut. We also discuss the possibility that the detected anomaly may hinge on the particular choice of the multipole bin around the third peak. We anticipate that the issue of whether or not the anomaly is intrinsic one or due to WMAP instrument noise will be resolved by the forthcoming Planck data.

Feasibility Study of a Future Korean Space Telescope

  • Lee, Dae-Hee;Ree, Chang Hee;Song, Yong-Seon;Jeong, Woong-Seob;Moon, Hong-Kyu;Kim, Min Gyu;Pyo, Jeonghyun;Moon, Bongkon;Park, Won-Kee
    • 천문학회보
    • /
    • 제42권1호
    • /
    • pp.39.4-40
    • /
    • 2017
  • According to the Korean government's Long-term Space Development Plan 2040, "Creative space science research" is included in a statement to investigate the origin and evolution of the universe by conducting a series of Korean space telescope missions: launch of space telescopes on a small satellite and an international collaboration explorer by 2020, a mid-size domestic space telescope by 2030, and a large size Korea leading international space telescope by 2040. We studied the feasibility of the future Korean Space Telescope (KST) for a mid-size domestic satellite platform. In order to pursue the uniqueness of the science program, we consider a wide range of observing wavelength (0.2um ~ 2.0um) with a spectral resolution of R~6 in the NUV and optical bands, and R~30 for NIR, utilizing an off-axis TMS(Three Mirror System) optics with a wide field of view ($2{\times}4$ degrees) which is optimized for ultra-low surface brightness sources. The main science goals of the mission include investigations of the galaxy formation, cosmic web, and the cosmic background radiation in the NUV-NIR regions. In this paper, we present the science cases and several technical challenges to be resolved along with the future milestones for the success of the KST mission.

  • PDF

Identification and spectral analysis of the CIBER/LRS detected stars

  • 김민규;;이형목;;;;;;;;;이대희;;;;;남욱원;;;;;정웅섭
    • 천문학회보
    • /
    • 제37권2호
    • /
    • pp.141.1-141.1
    • /
    • 2012
  • CIBER (Cosmic Infrared Background ExpeRiment) is a sounding-rocket borne experiment which is designed to find the evidence of the First stars (Pop.III stars) in the universe. They are expected to be formed between the recombination era at z ~ 1100 and the most distant quasar (z ~ 8). They have never been directly detected due to its faintness so far, but can be observed as a background radiation at around $1{\mu}m$ which is called the Cosmic Near-Infrared Background (CNB). The CIBER is successfully launched on July 10, 2010 at White Sands Missile Range, New Mexico, USA. It consists of three kinds of instruments. One of them is a LRS (Low Resolution Spectrometer) which is a refractive telescope of 5.5 cm aperture with spectral resolution of 20 ~ 30 and wavelength coverage of 0.7 to $2.0{\mu}m$ to measure the spectrum of the CNB. Since LRS detects not only CNB but also stellar components, we can study their spectral features with the broad band advantage especially at around $1{\mu}m$ which is difficult at ground observations because of the atmospheric absorption by water vapor. I identified around 300 stars from observed six fields. If we can classify their spectral types with SED fitting, we can study their physical conditions of the stellar atmosphere as well as making a stellar catalogue of continuous stellar spectrum.

  • PDF

농경지 토양수분 추정 기술 개발을 위한 테스트 베드 데이터 세트 (A Dataset from a Test-bed to Develop Soil Moisture Estimation Technology for Upland Fields)

  • 강민석;조성식;김종호;손승원;최성원;박주한
    • 한국농림기상학회지
    • /
    • 제22권3호
    • /
    • pp.107-116
    • /
    • 2020
  • 본 데이터 논문에서는 관측기반 농경지 토양수분 추정 기술 개발을 위해 서산과 태안에 2019년 5월에 구축한 테스트 베드에서 2019년 한해동안 얻어진 자료들을 공유하고자 한다. 본 데이터는 기상청에서 운영 중인 자동농업기상관측망 중에 하나인 서산 관측소 주변 밭과 인근 태안의 밭에 구축한 테스트 베드에서 얻어진 다양한 생태수문기상학적인 변수들(토양수분, 증발산, 강수, 복사, 기온, 습도, 식생지수 등)을 포함한다. 해당 데이터의 주목할 만한 사항은 (1) 토양수분관측을 Frequency Domain Reflectometry 및 Time Domain Reflectometry 센서를 이용한 지점관측 뿐만 아니라 COSMIC-ray 중성자 센서로 넓은 공간대표성을 지닌 면적관측을 동시에 수행하여 토양수분의 공간 스케일링 기술 개발 및 평가에 활용될 수 있다는 점, (2) Smart Surface Sensing System을 이용해 작물생육을 함께 감시함으로써 어떻게 토양수분과 작물생육이 상호작용하는지에 대한 이해를 증진시키는데 활용될 수 있다는 점, (3) 에디 공분산 시스템을 이용해 증발산을 함께 실측함으로써 지면 물수지 전반에 대한 평가가 가능하다는 점이다.

A Design of Solar Proton Telescope for Next Generation Small Satellite

  • Sohn, Jongdae;Oh, Suyeon;Yi, Yu;Min, Kyoung-Wook;Lee, Dae-Young;Seon, Jongho
    • Journal of Astronomy and Space Sciences
    • /
    • 제29권4호
    • /
    • pp.343-349
    • /
    • 2012
  • The solar proton telescope (SPT) is considered as one of the scientific instruments to be installed in instruments for the study of space storm (ISSS) which is determined for next generation small satellite-1 (NEXTSat-1). The SPT is the instrument that acquires the information on energetic particles, especially the energy and flux of proton, according to the solar activity in the space radiation environment. We performed the simulation to determine the specification of the SPT using geometry and tracking 4 (GEANT4). The simulation was performed in the range of 0.6-1,000 MeV considering that the proton, which is to be detected, corresponds to the high energy region according to the solar activity in the space radiation environment. By using aluminum as a blocking material and adjusting the energy detection range, we determined total 7 channels (0.6~5, 5~10, 10~20, 20~35, 35~52, 52~72, and >72 MeV) for the energy range of SPT. In the SPT, the proton energy was distinguished using linear energy transfer to compare with or discriminate from relativistic electron for the channels P1-P3 which are the range of less than 20 MeV, and above those channels, the energy was determined on the basis of whether silicon semiconductor detector (SSD) signal can pass or not. To determine the optimal channel, we performed the conceptual design of payload which uses the SSD. The designed SPT will improve the understanding on the capture and decline of solar energetic particles at the radiation belt by measuring the energetic proton.

Geant4를 활용한 국제우주정거장 내의 조직등가비례계수기 모의 실험 (SIMULATION OF THE TISSUE EQUIVALENT PROPORTIONAL COUNTER IN THE INTERNATIONAL SPACE STATION WITH GEANT4)

  • 표정현;이재진;남욱원;김성환;김현옥;임창휘;박귀종;이대희;박영식;문명국
    • 천문학논총
    • /
    • 제27권3호
    • /
    • pp.81-86
    • /
    • 2012
  • The International Space Station (ISS) orbits the Earth within the inner radiation belt, where high-energy protons are produced by collisions of cosmic rays to the upper atmosphere. About 6 astronauts stay in the ISS for a long period, and it should be important to monitor and assess the radiation environment in the ISS. The tissue equivalent proportional counter (TEPC) is an instrument to measure the impact of radiation on the human tissue. KASI is developing a TEPC as a candidate payload of the ISS. Before the detailed design of the TEPC, we performed simulations to test whether our conceptual design of the TEPC will work propertly in the ISS and to predict its performance. The simulations estimated that the TEPC will measure the dose equivalent of about 1:1 mSv during a day in the ISS, which is consistent with previous measurements.

DEVELOPMENT AND EVALUATION OF THE MUON TRIGGER DETECTOR USING A RESISTIVE PLATE CHAMBER

  • Park, Byeong-Hyeon;Kim, Yong-Kyun;Kang, Jeong-Soo;Kim, Young-Jin;Choi, Ihn-Jea;Kim, Chong;Hong, Byung-Sik
    • Journal of Radiation Protection and Research
    • /
    • 제36권1호
    • /
    • pp.35-43
    • /
    • 2011
  • The PHENIX Experiment is the largest of the four experiments that have taken data at the Relativistic Heavy Ion Collider. PHENIX, the Pioneering High Energy Nuclear Interaction eXperiment, is designed specifically to measure direct probes of the collisions such as electrons, muons, and photons. The primary goal of PHENIX is to discover and study a new state of matter called the Quark-Gluon Plasma. Among many particles, muons coming from W-boson decay gives us key information to analyze the spin of proton. Resistive plate chambers are proposed as a suitable solution as a muon trigger because of their fast response and good time resolution, flexibility in signal readout, robustness and the relatively low cost of production. The RPC detectors for upgrade were assembled and their performances were evaluated. The procedure to make the detectors better was optimized and described in detail in this thesis. The code based on ROOT was written and by using this the performance of the detectors made was evaluated, and all of the modules for north muon arm met the criteria and installation at PHENIX completed in November 2009. As RPC detectors that we made showed fast response, capacity of covering wide area with a resonable price and good spatial resolution, this will give the opportunity for applications, such as diagnosis and customs inspection system.

글로벌 삼중수소 순환 모델을 이용한 삼중수소 환경 방사능 추정 (Estimation of Tritium Concentration in the Environment based upon Global Tritium Cycling Model)

  • 최희주;이한수;강희석;이창우
    • Journal of Radiation Protection and Research
    • /
    • 제28권1호
    • /
    • pp.1-8
    • /
    • 2003
  • 원자력 발전소에 대한 주기적 안전성 평가에서는 발전소 주변 환경감시 프로그램 적절성의 확보를 요구한다. 이를 위하여 고리 원자력발전소 주변에 대하여 과거에 측정된 삼중수소의 환경방사능 자료를 분석하고, 새로이 시료를 채취하여 농도를 측정하였다. 분석결과 고리 원자력 발전소 주변에서의 삼중수소 농도가 국내 자연 환경 방사능 농도와 유사하였다 국내 삼중수소 환경방사능 변화를 모델링을 통하여 추정하였다. 이 모델링에서는 NCRP 62에서 권고한 7격실 글로벌 삼중수소 순환 모델 중 지구 전체에 대한 것과 북반구에 대한 것을 비교하였다. 이들 모델식에 대한 수치해는 AMBER 프로그램을 이용하여 구하였으며, 대기 중으로 방출되는 삼중수소의 선원항으로 4가지 경우를 고려하였다. 계산결과, 지표수의 삼중수소 농도가 해수나 지하수의 농도보다 놀게 나타났고, 우주선에 의한 삼중수소 발생이 가장 중요한 삼중수소 발생원 이었으며, 핵실험에 의해 발생된 삼중수소는 많이 감소하였다.

Constraints on dark radiation from cosmological probes

  • Rossi, Graziano;Yeche, Christophe;Palanque-Delabrouille, Nathalie;Lesgourgues, Julien
    • 천문학회보
    • /
    • 제40권1호
    • /
    • pp.44.1-44.1
    • /
    • 2015
  • We present joint constraints on the number of effective neutrino species $N_{eff}$ and the sum of neutrino masses ${\Sigma}m_{\nu}$, based on a technique which exploits the full information contained in the one-dimensional Lyman-${\alpha}$ forest flux power spectrum, complemented by additional cosmological probes. In particular, we obtain $N_{eff}=2.91{\pm}0.22$ (95% CL) and ${\Sigma}m_{\nu}$ < 0.15 eV (95% CL) when we combine BOSS Lyman-${\alpha}$ forest data with CMB (Planck+ACT+SPT+WMAP polarization) measurements, and $N_{eff}=2.88{\pm}0.20$ (95% CL) and ${Sigma}m_{\nu}$ < 0.14 eV (95% CL) when we further add baryon acoustic oscillations. Our results tend to favor the normal hierarchy scenario for the masses of the active neutrino species, provide strong evidence for the Cosmic Neutrino Background from $N_{eff}{\approx}3$($N_{eff}=0$ is rejected at more than $14{\sigma}$), and rule out the possibility of a sterile neutrino thermalized with active neutrinos (i.e., $N_{eff}=4$) - or more generally any decoupled relativistic relic with $${\Delta}N_{eff}{\sim_=}1$$ - at a significance of over $5{\sigma}$, the strongest bound to date, implying that there is no need for exotic neutrino physics in the concordance ${\Lambda}CDM$ model.

  • PDF

A GRADIENT-T SZE

  • HATTORI MAKOTO;OKABE NOBUHIRO
    • 천문학회지
    • /
    • 제37권5호
    • /
    • pp.543-546
    • /
    • 2004
  • The inverse Compton scattering of the cosmic microwave background (CMB) radiation with electrons in the intracluster medium which has a temperature gradient, was examined by the third-order perturbation theory of the Compton scattering. A new type of the spectrum distortion of the CMB was found and named as gradient T Sunyaev-Zel'dovich effect (gradT SZE). The spectrum has an universal shape. There is a zero distortion point, the cross over frequency, at 326GHz. When the hotter region locates closer to an observer, the intensity becomes brighter than the CMB in the frequency region lower than the cross over frequency and fainter than the CMB in the frequency region higher than the cross over frequency. When the cooler region locates closer to an observer, the distorted part of the spectrum has an opposite sign to the above case. The amplitude of the spectrum distortion does not de-pend on the electron density and depends on the heat conductivity and the total temperature variation along a line of sight. Therefore, the gradT SZE provides an unique opportunity to measure thermally nonequilibrium electron momentum distribution function in the ICM and combined with the X-ray measurements of the electron temperature distribution provides an opportunity of direct measurement of the heat conductivity in the ICM.