• Title/Summary/Keyword: Cortical stimulation

Search Result 112, Processing Time 0.023 seconds

Optical imaging of epileptic activity and epilepsy treatments in neocortex

  • Suh, Min-Ah
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2009.02a
    • /
    • pp.427-428
    • /
    • 2009
  • Optical imaging offers excellent spatio-temporal sensitivity that is unparalleled by any other perfusion based imaging techniques. We used in vivo optical recording of intrinsic signals (ORIS) to map neurovascular hemodynamics of perfusion, oximetry and membrane potential during epileptic events in rat and mouse neocortex. Studies of hemodynamic changes with ORIS alone were also performed in human. Laboratory studies in rodent epilepsy models have demonstrated a persistent increase in deoxygenated hemoglobin (Hbr) and a decrease in tissue oxygenation during interictal spikes and ictal events. This "epileptic dip", like the "initial dip" recorded during normal sensory processing, implies that the enormous rise in cerebral blood flow (CBF) is inadequate to meet the increased metabolic demands associated with synchronized epileptic activity. These findings are critically important to the interpretation of the perfusion-based imaging studies, such as fMRI. In addition, we visualized the effect of direct cortical electrical stimulation, an alterative epilepsy treatment. The optical data following direct cortical electrical stimulation showed that hemodynamic signals are sensitive to different electrical stimulation parameters. Furthermore, our recent data demonstrated that the application of unilateral electrical stimulation is able to elicit bilateral hemodynamic responses in rat neocortex.

  • PDF

Cortical Activation of the Somatosensory Hand Area in Hemiplegic Cerebral Palsy Patients. : fMRI Study. -Case Reports- (뇌성마비 편마비 환아의 체성감각피질 활성화에 대한 fMRI 연구 -증례 보고-)

  • Lee, Zee Ihn
    • Annals of Clinical Neurophysiology
    • /
    • v.7 no.1
    • /
    • pp.34-36
    • /
    • 2005
  • Two hemiplegic cerebral palsy patients were studied to investigate the cortical mechanisms underlying preserved somatosensory capacity, using functional MRI(fMRI). Tactile stimulation was performed by brushing of palm, during fMRI study. By the affected hand stimulation, contralateral primary somatosensory cortex was activated in patient 1 and cortical area anterior to the lesion site was activated in patient 2. We suggest that reorganization of the somatosensory cortex after brain injury can be induced by recruitment of undamaged areas adjacent to lesion site.

  • PDF

Intraoperative Neurophysiological Monitoring for Optimal Brain Mapping

  • Park, Sang-Nam;Park, Sang-Ku
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.45 no.4
    • /
    • pp.170-179
    • /
    • 2013
  • There is a correct way to avoid any sequale in the central motor area during neurosurgery procedures. A clear way to find the circumference of the central sulcus, central motor, and sensory areas by giving cortical electrical stimulation to the central motor area immediate after surgery is proposed. Looking at patients who underwent brain surgery September 2009 to July 2013, the central sulcus and speech areas around the central area of the brain was investigated, using the practices of either a localized brain map check or a direct cortical electrical stimulation test. Brain maps localized around the surgical site through functional movement or speech areas were identified. Accurate tests done during surgery without damage to motor neurons or after surgery were conducted smoothly. Although successful brain map test localization can be accomplished, there are some factors that can interfere. The following phenomena can reverse the phase: (1) the first sensory / motor in the case of patients severe nerve damage; (2) placement of the electrode on top of the vessel; (3) presence of a brain tumor near the brain cortex; (4) use of anesthesia if patient cooperation is difficult; and (5) location of the electrode position and stimulus is inappropriate.

  • PDF

Perspective for Clinical Application and Research of Transcranial Direct Current Stimulation in Physical Therapy

  • Kim, Chung-Sun;Nam, Seok-Hyun
    • The Journal of Korean Physical Therapy
    • /
    • v.22 no.6
    • /
    • pp.91-98
    • /
    • 2010
  • Neurostimulation approaches have been developed and explored to modulate neuroplastic changes of cortical function in human brain. As one of the most primary noninvasive tools, transcranial direct current stimulation (tDCS) was extensively studied in the field of neuroscience. The alternation of cortical neurons depending on the polarity of the tDCS has been used for improving cognitive processing including working memory, learning, and language in normal individuals, as well as in patients with neurological or psychiatric diseases. In addition, tDCS has great advantages: it is a non-invasive, painless, safe, and cost-effective approach to enhance brain function in normal subjects and patients with neurological disorders. Numerous previous studies have confirmed the efficacy of tDCS. However, tDCS has not been considered for clinical applications and research in the field of physical therapy. Therefore, this review will focus on the general principles of tDCS and its related application parameters, and provide consideration of motor behavioral research and clinical applications in physical therapy.

Intraoperative monitoring of cortico-cortical evoked potentials of the frontal aslant tract in a patient with oligodendroglioma

  • Yang, Ha-rin;Ra, Young-Shin;Koo, Yong Seo
    • Annals of Clinical Neurophysiology
    • /
    • v.24 no.1
    • /
    • pp.21-25
    • /
    • 2022
  • The newly identified frontal aslant tract (FAT) that connects the posterior Broca's area to the supplementary motor area is known to be involved in speech and language functions. We successfully intraoperatively monitored FAT using cortico-cortical evoked potentials generated by single-pulse electrical cortical stimulation in a patient with oligodendroglioma.

Functional Magnetic Resonance Imaging and Diffusion Tensor Imaging for Language Mapping in Brain Tumor Surgery: Validation With Direct Cortical Stimulation and Cortico-Cortical Evoked Potential

  • Koung Mi Kang;Kyung Min Kim;In Seong Kim;Joo Hyun Kim;Ho Kang;So Young Ji;Yun-Sik Dho;Hyongmin Oh;Hee-Pyoung Park;Han Gil Seo;Sung-Min Kim;Seung Hong Choi;Chul-Kee Park
    • Korean Journal of Radiology
    • /
    • v.24 no.6
    • /
    • pp.553-563
    • /
    • 2023
  • Objective: Functional magnetic resonance imaging (fMRI) and diffusion tensor imaging-derived tractography (DTI-t) contribute to the localization of language areas, but their accuracy remains controversial. This study aimed to investigate the diagnostic performance of preoperative fMRI and DTI-t obtained with a simultaneous multi-slice technique using intraoperative direct cortical stimulation (DCS) or corticocortical evoked potential (CCEP) as reference standards. Materials and Methods: This prospective study included 26 patients (23-74 years; male:female, 13:13) with tumors in the vicinity of Broca's area who underwent preoperative fMRI and DTI-t. A site-by-site comparison between preoperative (fMRI and DTI-t) and intraoperative language mapping (DCS or CCEP) was performed for 226 cortical sites to calculate the sensitivity and specificity of fMRI and DTI-t for mapping Broca's areas. For sites with positive signals on fMRI or DTI-t, the true-positive rate (TPR) was calculated based on the concordance and discordance between fMRI and DTI-t. Results: Among 226 cortical sites, DCS was performed in 100 sites and CCEP was performed in 166 sites. The specificities of fMRI and DTI-t ranged from 72.4% (63/87) to 96.8% (122/126), respectively. The sensitivities of fMRI (except for verb generation) and DTI-t were 69.2% (9/13) to 92.3% (12/13) with DCS as the reference standard, and 40.0% (16/40) or lower with CCEP as the reference standard. For sites with preoperative fMRI or DTI-t positivity (n = 82), the TPR was high when fMRI and DTI-t were concordant (81.2% and 100% using DCS and CCEP, respectively, as the reference standards) and low when fMRI and DTI-t were discordant (≤ 24.2%). Conclusion: fMRI and DTI-t are sensitive and specific for mapping Broca's area compared with DCS and specific but insensitive compared with CCEP. A site with a positive signal on both fMRI and DTI-t represents a high probability of being an essential language area.

Transcranial magnetic stimulation parameters as neurophysiological biomarkers in Alzheimer's disease

  • Lee, Juyoun;Lee, Ae Young
    • Annals of Clinical Neurophysiology
    • /
    • v.23 no.1
    • /
    • pp.7-16
    • /
    • 2021
  • Transcranial magnetic stimulation (TMS) is a safe and noninvasive tool for investigating the cortical excitability of the human brain and the neurophysiological functions of GABAergic, glutamatergic, and cholinergic neural circuits. Neurophysiological biomarkers based on TMS parameters can provide information on the pathophysiology of dementia, and be used to diagnose Alzheimer's disease and differentiate different types of dementia. This review introduces the basic principles of TMS, TMS devices and stimulating paradigms, several neurophysiological measurements, and the clinical implications of TMS for Alzheimer's disease.

Effects of Repetitive High Frequency Motor Cortex Transcranial Magnetic Stimulation and Cortical Disinhibition in Diabetic Patients with Neuropathic Pain: A Case Control Study (신경병성 통증이 있는 당뇨 환자에서 반복 경두개 자기자극치료의 효과 및 피질 탈억제 현상: 환자 대조군 연구)

  • Han, Yong;Lee, Chan Ho;Min, Kyung Wan;Han, Kyung Ah;Choi, Hyo Seon;Kang, Youn Joo
    • Clinical Pain
    • /
    • v.18 no.1
    • /
    • pp.1-7
    • /
    • 2019
  • Objective: To investigate the cortical disinhibition in diabetic patients with neuropathic pain and without pain. In addition, we assessed the cortical disinhibition and pain relief after repetitive transcranial magnetic stimulation (rTMS). Method: We recruited diabetic patients with neuropathic pain (n = 15) and without pain (n = 15). We compared the TMS parameters such as motor evoked potential (MEP) amplitude, cortical silent period (CSP), intracortical inhibition (ICI %) and intracortical facilitation (ICF %) between two groups. Moreover, we evaluated the changes of pain and TMS parameters after five consecutive high frequency (10 Hz) rTMS sessions in diabetic patients with neuropathic pain. The neuropathic pain intensity (visual analog scale) and TMS parameters were assessed on pre-rTMS, post-rTMS 1day, and post-rTMS 5 day. Results: The comparison of the CSP, ICI % revealed significant differences between two groups (p<0.01). After rTMS sessions, the decrease in pain intensity across the three time points revealed a pattern of significant differences (p<0.01). The change of CSP and ICI % across the three test points revealed a pattern of significant differences (p<0.01). The ICI % revealed immediate increase after first rTMS application and significant increase after five rTMS application (p<0.01) in diabetic patients with neuropathic pain. The MEP amplitude and ICF % did not reveal any significant changes. Conclusion: Our findings demonstrate that cortical inhibition was decreased in diabetic patients with neuropathic pain compared with patients without pain. Furthermore, we also identified that five daily rTMS sessions restored the defective intracortical inhibition which related to improvement of neuropathic pain in diabetic patients.

Effects of High Frequency Repetitive Transcranial Magnetic Stimulation on Function in Subacute Stroke Patients

  • Cha, Hyun-Gyu;Kim, Myoung-Kwon;Nam, Hyoung-Chun;Ji, Sang-Goo
    • Journal of Magnetics
    • /
    • v.19 no.2
    • /
    • pp.192-196
    • /
    • 2014
  • The aim of the present study was to examine the effects of high and low frequency repetitive transcranial magnetic stimulation on motor cortical excitability and the balance function in subacute stroke patients. Twenty-four subjects were randomly assigned to either the high frequency (HF) rTMS group, or the low frequency (LF) rTMS group, with 12 subjects each. All subjects received routine physical therapy. In addition, both groups performed a total of 20 sessions of rTMS for 20 minutes, once a day, 5 times per week, for a 4-week period. In the HF rTMS group, 10 Hz rTMS was applied daily to the hotspot of the lesional hemisphere; and in the LF rTMS group, 1 Hz rTMS was applied daily to the hotspot of the nonlesional hemisphere. Motor cortex excitability was determined by motor evoked potentials, and the balance function was evaluated by use of the Balance Index (BI) and the Berg Balance Scale (BBS), before and after the intervention. The change rate in the value of each variable differed significantly between the two groups (p<0.05). Furthermore, significant differences were observed between all post-test variables of the two groups (p<0.05). In the HF rTMS, significant differences were found in all the pre- and post-test variables (p<0.05). On the other hand, in the LF rTMS, significant difference was observed only between the pre- and post-test results of BI and BBS (p<0.05). The findings demonstrate that HF rTMS can be more helpful in improving the motor cortical excitability and balance function of patients with subacute stroke treatment than LF rTMS, and that it may be used as a practical adjunct to routine rehabilitation.

Repetitive Transcranial Magnetic Stimulation to Treat Depression and Insomnia with Chronic Low Back Pain

  • Park, Eun Jung;Lee, Se Jin;Koh, Do Yle;Han, Yoo Mi
    • The Korean Journal of Pain
    • /
    • v.27 no.3
    • /
    • pp.285-289
    • /
    • 2014
  • Transcranial magnetic stimulation (TMS) is a noninvasive and safe technique for motor cortex stimulation. TMS is used to treat neurological and psychiatric disorders, including mood and movement disorders. TMS can also treat several types of chronic neuropathic pain. The pain relief mechanism of cortical stimulation is caused by modifications in neuronal excitability. Depression is a common co-morbidity with chronic pain. Pain and depression should be treated concurrently to achieve a positive outcome. Insomnia also frequently occurs with chronic lower back pain. Several studies have proposed hypotheses for TMS pain management. Herein, we report two cases with positive results for the treatment of depression and insomnia with chronic low back pain by TMS.