• Title/Summary/Keyword: Cortical neuron

Search Result 46, Processing Time 0.026 seconds

PC12 and Cortical Neuron cell Death by Bisphenol A Through ERK Signal Pathway: Role of Estrogen-Receptor $\beta$

  • Lee, Yoot-Mo;Seong, Min-Je;Lee, Sun-Young;Lee, Sang-Min;Kim, Tae-Seong;Han, Soon-Young;Yoo, Han-Soo;Lee, Myung-Koo;Oh, Ki-Wan
    • Proceedings of the Korean Society of Toxicology Conference
    • /
    • 2003.10b
    • /
    • pp.135-135
    • /
    • 2003
  • Bisphenol A (BPA) mimics estrogen and its activity is one third to one quarter that of estradiol. BPA, an ubiquitous environmental contaminent has been shown to cause development reproductive toxicity and carcinogenic effect. BPA may do physiological action through ER${\alpha}$ and ER${\beta}$ which are expressed in central nerve system.(omitted)

  • PDF

Calcium Signal Dependent Cell Death by Presenilin-2 Mutation in PC12 Cells and in Cortical Neuron from Presenilin-2 Mutation Transgenic Mice

  • Lee, Sun-Young;Song, Youn-Sook;Hwang, Dae-Yeun;Kim, Young-Kyu;Yoon, Do-Young;Lim, Jong-Seok;Hong, Jin-Tae
    • Proceedings of the Korean Society of Toxicology Conference
    • /
    • 2003.10b
    • /
    • pp.145-145
    • /
    • 2003
  • Familial form of Alzheimer's disease (FAD) is caused by mutations in presenilin-1 (PS-1) and presenilin-2 (PS-2). PS1 and PS2 mutation are known to similar effects on the production of amyloid ${\beta}$ peptide (A${\beta}$) and cause of neuronal cell death in the brain of patient of AD. The importance of the alternation of cellular calcium homeostasis in the neuronal cell death by PS1 mutation in a variety of experimental systems has been demonstrated.(omitted)

  • PDF

Erythropoietin increases neuronal cell differentiation : association of transcriptional factors AP-l and NF-$\kappa$B activation

  • Lee, Sang-Min;Park, Hye-Ji;Lee, Yoot-Mo;Moon, Dong-Cheul;Kim, Kyong-Soon;Cho, Kyong-Ju;Yoon, Do-Young;Song, Suk-Gil;Hong, Jin-Tae
    • Proceedings of the PSK Conference
    • /
    • 2003.10b
    • /
    • pp.169.2-170
    • /
    • 2003
  • Erythropietin (EPO), a hematopoietic factor is also required for normal brain development, and its receptor is localized in brain. Therefore, it is possible that EPO could act as a neurotropic factor inducing differentiation of neurons. The present study, we therefore investigated whether EPO can increase differentiation of undifferentiated cortical neuron isolated from postneonatal (Day 1) rat brains and PC12 cell, undifferentiated dopaminagic cell line. EPO dose (1-100 U/ml) dependently increased cell differentiation and expression of differentiation marker gene (neurofilament and tyrosine hydroxylase) in both cells. (omitted)

  • PDF

Calcium signal dependent cell death by presenlin-2 mutation in PC12 cells and in cortical neuron from presenlin-2 mutation transgenic mice

  • Lee, Sun-Young;Song, Yeun-Suk;Hwang, Dae-Yeun;Kim, Young-Kyu;Yoon, Do-Young;Lim, Jong-Seok;Hong, Jin-Tae
    • Proceedings of the PSK Conference
    • /
    • 2003.10b
    • /
    • pp.94.3-95
    • /
    • 2003
  • Familial form of Alzheimer's disease (FAD) is caused by mutations in presenilin-l (PS-1) and presenilin-2 (PS-2). PS1 and PS2 mutation are known to similar effects on the production of amyloid peptide (A ) and cause of neuronal cell dath in the brain of patient of Alzheimer's disease. The importance of the alternation of cellular calcium homeostasis in the neuronal cell death by PS1 mutation in a variety of experimental systems has been demonstrated. However, no studies on the effect of PS2 of mutant PS2 on cellular calcium homeostasis, and relevance of its change to neuronal cell vulnerability against neurotoxins have been reported. (omitted)

  • PDF

PC12 and cortical neuron cell death by Bisphenol A through ERK signal pathway : role of estrogen-receptor $\beta$

  • Lee, Yoot-Mo;Seong, Min-Je;Lee, Sun-Young;Lee, Sang-Min;Kim, Tae-Seong;Han, Soon-Young;Yoo, Han-Soo;Lee, Myung-Koo;Oh, Ki-Wan;Hong, Jin-Jae
    • Proceedings of the PSK Conference
    • /
    • 2003.10b
    • /
    • pp.116.1-116.1
    • /
    • 2003
  • Bisphenol A (BPA) mimics estrogen and its activity is one third to one quarter that of estradiol. BPA, an ubiquitous environmental contaminent has been shown to cause development reproductive toxicity and carcinogenic effect. BPA may do physiological action through ER$\alpha$ and ER$\beta$ which are expressed in central nerve system. We previously found that expose of BPA to immature mice resulted in behavial alternation, suggesting that overexposure of BPA could be neurotoxic. (omitted)

  • PDF

Translation elongation factor-1A1 (eEF1A1) localizes to the spine by domain III

  • Cho, Sun-Jung;Lee, Hyun-Sook;Dutta, Samikshan;Seog, Dae-Hyun;Moon, Il-Soo
    • BMB Reports
    • /
    • v.45 no.4
    • /
    • pp.227-232
    • /
    • 2012
  • In vertebrates, there are two variants of eukaryotic peptide elongation factor 1A (eEF1A; formerly eEF-$1{\alpha}$), eEF1A1 and eEF1A2, which have three well-conserved domains ($D_I$, $D_{II}$, and $D_{III}$). In neurons, eEF1A1 is the embryonic type, which is expressed during embryonic development as well as the first two postnatal weeks. In the present study, EGFP-tagged eEF1A1 truncates were expressed in cortical neurons isolated from rat embryo (E18-19). Live cell images of transfected neurons showed that $D_{III}$-containing EGFP-fusion proteins (EGFP-$D_{III}$, -$D_{II-III}$, -$D_{I-III}$) formed clusters that were confined within somatodendritic domains, while $D_{III}$-missing ones (EGFP-$D_I$, -$D_{II}$, -$D_{I-II}$) and control EGFP were homogeneously dispersed throughout the neuron including axons. In dendrites, EGFP-$D_{III}$ was targeted to the heads of spine- and filopodia-like protrusions, where it was colocalized with $SynGAP{\alpha}$, a postsynaptic marker. Our data indicate that $D_{III}$ of eEF1A1 mediates formation of clusters and localization to spines.

Induction of Neuron-derived Orphan Receptor-1 in the Dentate Gyrus of the Hippocampal Formation Following Transient Global Ischemia in the Rat

  • Kim, Younghwa;Hong, Soontaek;Noh, Mi Ra;Kim, Soo Young;Huh, Pil Woo;Park, Sun-Hwa;Sun, Woong;Kim, Hyun
    • Molecules and Cells
    • /
    • v.22 no.1
    • /
    • pp.8-12
    • /
    • 2006
  • Neuron-derived orphan receptor (NOR-1) is a member of the thyroid/steroid receptor superfamily that was originally identified in forebrain neuronal cells undergoing apoptosis. In addition to apoptotic stimuli, activation of several signal transduction pathways including direct neuronal depolarization regulates the expression of NOR-1. In this study we tested whether the expression of NOR-1 is changed following transient ischemic injury in the adult rat brain. NOR-1 mRNA increased rapidly in the dentate gyrus of the hippocampal formation and piriform cortex 3 h after transient global ischemia and returned to basal level at 6 h. On the other hand, oxygen-glucose deprivation of cultured cerebral cortical neurons did not alter the expression of NOR-1. These results suggest that expression of NOR-1 is differentially regulated in different brain regions in response to globally applied brain ischemia, but that hypoxia is not sufficient to induce its expression.

Sustained Intracellular Acidosis Triggers the Na+/H+ Exchager-1 Activation in Glutamate Excitotoxicity

  • Lee, Bo Kyung;Jung, Yi-Sook
    • Biomolecules & Therapeutics
    • /
    • v.25 no.6
    • /
    • pp.593-598
    • /
    • 2017
  • The $Na^+/H^+$ exchanger-1 (NHE-1) is a ubiquitously expressed pH-regulatory membrane protein that functions in the brain, heart, and other organs. It is increased by intracellular acidosis through the interaction of intracellular $H^+$ with an allosteric modifier site in the transport domain. In the previous study, we reported that glutamate-induced NHE-1 phosphorylation mediated by activation of protein kinase C-${\beta}$ (PKC-${\beta}$) in cultured neuron cells via extracellular signal-regulated kinases (ERK)/p90 ribosomal s6 kinases (p90RSK) pathway results in NHE-1 activation. However, whether glutamate stimulates NHE-1 activity solely by the allosteric mechanism remains elusive. Cultured primary cortical neuronal cells were subjected to intracellular acidosis by exposure to $100{\mu}M$ glutamate or 20 mM $NH_4Cl$. After the desired duration of intracellular acidosis, the phosphorylation and activation of PKC-${\beta}$, ERK1/2 and p90RSK were determined by Western blotting. We investigated whether the duration of intracellular acidosis is controlled by glutamate exposure time. The NHE-1 activation increased while intracellular acidosis sustained for >3 min. To determine if sustained intracellular acidosis induced NHE-1 phosphorylation, we examined phosphorylation of NHE-1 induced by intracellular acidosis by transient exposure to $NH_4Cl$. Sustained intracellular acidosis led to activation and phosphorylation of NHE-1. In addition, sustained intracellular acidosis also activated the PKC-${\beta}$, ERK1/2, and p90RSK in neuronal cells. We conclude that glutamate stimulates NHE-1 activity through sustained intracellular acidosis, which mediates NHE-1 phosphorylation regulated by PKC-${\beta}$/ERK1/2/p90RSK pathway in neuronal cells.

Voltage Dependent N Type Calcium Channel in Mouse Egg Fertilization

  • Eum, Jin Hee;Park, Miseon;Yoon, Jung Ah;Yoon, Sook Young
    • Development and Reproduction
    • /
    • v.24 no.4
    • /
    • pp.297-306
    • /
    • 2020
  • Repetitive changes in the intracellular calcium concentration ([Ca2+]i) triggers egg activation, including cortical granule exocytosis, resumption of second meiosis, block to polyspermy, and initiating embryonic development. [Ca2+]i oscillations that continue for several hours, are required for the early events of egg activation and possibly connected to further development to the blastocyst stage. The sources of Ca2+ ion elevation during [Ca2+]i oscillations are Ca2+ release from endoplasmic reticulum through inositol 1,4,5 tri-phosphate receptor and Ca2+ ion influx through Ca2+ channel on the plasma membrane. Ca2+ channels have been characterized into voltage-dependent Ca2+ channels (VDCCs), ligand-gated Ca2+ channel, and leak-channel. VDCCs expressed on muscle cell or neuron is specified into L, T, N, P, Q, and R type VDCs by their activation threshold or their sensitivity to peptide toxins isolated from cone snails and spiders. The present study was aimed to investigate the localization pattern of N and P/Q type voltage-dependent calcium channels in mouse eggs and the role in fertilization. [Ca2+]i oscillation was observed in a Ca2+ contained medium with sperm factor or adenophostin A injection but disappeared in Ca2+ free medium. Ca2+ influx was decreased by Lat A. N-VDCC specific inhibitor, ω-Conotoxin CVIIA induced abnormal [Ca2+]i oscillation profiles in SrCl2 treatment. N or P/Q type VDC were distributed on the plasma membrane in cortical cluster form, not in the cytoplasm. Ca2+ influx is essential for [Ca2+]i oscillation during mammalian fertilization. This Ca2+ influx might be controlled through the N or P/Q type VDCCs. Abnormal VDCCs expression of eggs could be tested in fertilization failure or low fertilization eggs in subfertility women.

Neuronal Protection by Rooibos (Aspalathus linearis) Tea Infusions in a Hypoxic Model of Cultured Rat Cortical Neurons (흰쥐 대뇌세포배양의 저산소증모델에서 루이보스차 침제에 의한 신경세포 보호작용)

  • Moon, Il-Soo;Ko, Bok-Hyun
    • Journal of Life Science
    • /
    • v.14 no.2
    • /
    • pp.291-295
    • /
    • 2004
  • Rooibos (Aspalathus linearis) (RB) is a leguminous shrub native to the mountainous areas of the northwestern Cape Province in South Africa. RB tea infusions are the fermentation products of its leaves and fine sterns, and known to have a high antioxidative activity due to the presence of flavonoids and phenolic acids. We investigated the effects of RB tea on the alleviation of oxidative stress on cultured rat cortical neurons in a hypoxic model. Measurement of lactate dehydrogenase (LDH) released into culture media revealed that RB increased cell viabilities in both normoxia (6-18%) and hypoxia (2-24%) dose-dependently (10-100 $\mu\textrm{g}$/ml) on 16 days in vitro (3 days after treatment). Visualization of cell morphology by expression of GFP-Hsc70 fusion protein showed that RB (50 $\mu\textrm{g}$/ml) reduced the average vacuolated soma from 55.4$\pm$4.59% (no RB addition) to 40.9$\pm$6.3% (RB addition) on 5 days after hypoxia. Our results proves efficacy of RB in the neuroprotection of hypoxic neurons and extend application for RB into the prevention and/or treatment of neuronal damages.