• 제목/요약/키워드: Cortical bone resorption

검색결과 59건 처리시간 0.023초

유한요소법을 이용한 치과용 고정체와 치조골에서의 응력분포에 대한 생체 역학적 분석 (A Biomechanical Analysis or the Stress Distribution of Dental Implant and Alveolar Bone Utilizing Finite Element Method)

  • 정지광;신정욱;이성재;김영곤;김정성;박정홍
    • 대한의용생체공학회:학술대회논문집
    • /
    • 대한의용생체공학회 1997년도 추계학술대회
    • /
    • pp.511-514
    • /
    • 1997
  • The objective of this study is to propose a finite element based design of the dental implant replacing unction and shape of natural teeth. For this, geometric actors were varied to investigate stress distribution of the alveolar bone around dental implant. In this study, the results were obtained based on the theory of linear elastic, with geometrically axisymmetric assumption. Geometric actors determining implant shape are ranged as 0.2mm-0.6mm, 0.04mm-0.1mm, 0.46mm-0.84mm or height of thread, radius of curvature of thread, and pitch, respectively. The stresses in the alveolar bone caused by biting force playa major role in determining implant stability. Especially, the stress concentration in the cortical bone causes bone resorption and finally makes the implant unstable. Therefore, the stress distributions were investigated on the side of the alveolar bone focusing on the area of cortical bone. The maximum von Mises stress was found to increase up to 6% as the height of thread increases, while its value was to decrease to 19% when the radius of curvature increase within the assigned ranges. For the variation of pitch, the larger size of pitch results in greater maximum von Mises stress when the length of the implant under consideration is fixed. The existence of the neck below the shoulder did not affect the stress distribution in the region of alveolar bone. However, the stresses on the side of the implant near the neck were found to be different by 20% approximately. Therefore, the neck can provide the stability of the implant against continuing biting movement. As a conclusion, the finite element based study shows a potential in designing the dental implant systematically.

  • PDF

$XiVE^{(R)}$ 임플랜트 시스템에서 고정체보다 작은 직경의 지대주 장착이 경부 피질골 응력에 미치는 효과에 대한 유한요소해석적 연구 (FINITE ELEMENT EVALUATION OF THE EFFECT OF DIFFERENCES IN THE ABUTMENT AND THE FIXTURE DIAMETERS ON THE CERVICAL BONE STRESSES)

  • 유원재;이규복
    • 대한치과보철학회지
    • /
    • 제43권1호
    • /
    • pp.95-104
    • /
    • 2005
  • Statement of problem. Higher stresses at the cervical bone around dental implants have been seen as a primary cause of the bone resorption at the site. Purpose : To determine the possibility of stress reduction by assembly of different abutment and implant in diameters. Material and methods. Abutments of several different diameters assembled on the top of XiVE$^{(R)}$ implants were axisymmetrically modeled for a series of finite element analyses. Abutments of 3.4, 3.8, 4.5, and 5.5 mm diameters were assumed to be sit on implants of the same or bigger diameters. All the abutments with an exception of 3.4mm dia, are technically possible to be assembled on bigger implants. Main consideration was given to the stresses at the cervical cortical bone induced by loads of parallel to the implant axis. Results and conclusions. 1. Higher stresses were observed at the cervical area of all the models of the same diameters of abutment and future. The peak stresses, which were shown to be a function of the fixture diameter, were from 1-1.85MPa. 2. Difference in the diameters of the abutments and the implants actually reduced the cervical bone stresses. 3. Downsizing of the abutment by one step resulted in 0.1MPa (5%) reduction of the stresses. In light of the relatively lower bone stress, however, this amount of stress reduction was decided to be biomechanically insignificant.

Alveolar ridge augmentation with the perforated and nonperforated bone grafts

  • de Avila, Erica Dorigatti;Filho, Jose Scarso;de Oliveira Ramalho, Lizete Toledo;Real Gabrielli, Mario Francisco;Pereira Filho, Valfrido Antonio
    • Journal of Periodontal and Implant Science
    • /
    • 제44권1호
    • /
    • pp.33-38
    • /
    • 2014
  • Purpose: Autogenous bones are frequently used because of their lack of antigenicity, but good osteoconductive and osteoinductive properties. This study evaluated the biological behavior of perforated and nonperforated cortical block bone grafts. Methods: Ten nonsmoking patients who required treatment due to severe resorption of the alveolar process and subsequent implant installation were included in the study. The inclusion criteria was loss of one or more teeth; the presence of atrophy of the alveolar process with the indication of reconstruction procedures to allow rehabilitation with dental implants; and the absence of systemic disease, local infection, or inflammation. The patients were randomly divided into two groups based on whether they received a perforated (inner surface) or nonperforated graft. After a 6-month healing period, a biopsy was performed and osseointegrated implants were installed in the same procedure. Results: Fibrous connective tissue was evident at the interface in patients who received nonperforated grafts. However, full union between the graft and host bed was visible in those who had received a perforated graft. Conclusions: We found that cortical inner side perforations at donor sites increased the surface area and opened the medullary cavity. Our results indicate an increased rate of graft incorporation in patients who received such perforated grafts.

콘빔형전산화단층장치를 이용한 함치성낭의 방사선학적 연구 (Radiographic evaluation of dentigerous cyst with cone beam CT)

  • 박용찬;이완;이병도
    • Imaging Science in Dentistry
    • /
    • 제40권3호
    • /
    • pp.115-121
    • /
    • 2010
  • Purpose : The purpose of this study was to accurately analyze the radiographic characteristics of dentigerous cyst (DC) with multiplanar images of cone beam computed tomography (CBCT). Materials and Methods : Thirty eight radiographically and histopathologically proven cases of DCs were analyzed with panoramic radiograph and CBCT, retrospectively. The radiographic CT pattern, symmetry of radiolucency around the unerupted tooth crown, ratio of long length to short length, degree of cortical bone alternation, effects on adjacent tooth, and cyst size were analyzed. Relative frequencies of these radiographic features were evaluated. In order to compare the CBCT features of DC with those of odontogenic keratocyst (OKC), 9 cases of OKCs were analyzed with the same method radiographically. Results : DCs consisted of thirty unilocular cases (79.0%), seven lobulated cases (18.4%) and one multilocular case (2.6%). Eight were asymmetric (21.0%) and thirty were symmetric (79.0%). Maxillary DC showed rounder shape than mandibular DC (L/S ratio; maxilla 1.32, mandible 1.67). Alternations of lingual cortical bone (14 cases, 48.2%) were more frequent than those of buccal side (7 cases, 24.1%). CBCT images of DC showed definite root resorption and bucco-lingual tooth displacement. These findings were hardly observed on panoramic radiographs of DCs. Comparison of CBCT features of DC with those of OKC showed several different features. Conclusions : CBCT images of DC showed various characteristic radiographic features. Therefore, CBCT can be helpful for the diagnosis of DC radiographically.

유한요소법을 이용한 하이브리드형 임플란트의 응력해석 (Stress Analysis of Hybrid Implant Using Finite Element Method)

  • 권영두;장석호;박상현;이상원
    • 대한기계학회논문집A
    • /
    • 제32권3호
    • /
    • pp.290-296
    • /
    • 2008
  • After scientific verification of the osteointegration of dental implants, the overall efficiency of dental implants has been generally accepted. Thus, implants now play a major role in the clinical treatment of an edentulous mandible, and in the prosthetic maintenance equipment for partial edentulous mandible patients. Yet, for the successful long-term maintenance of implants, careful consideration of the bio-mechanics is needed to ensure that the maximum stress in the mandible as a result of chewing is maintained under a critical value. Accordingly, this study focuses on reducing the maximum stresses in an implanted mandible, especially in the cortical bone. Thus, the stresses in the implant and mandible are analyzed using finite element packages, including I-DEAS and NISA II/DISPLAY III, using a local zooming technique for a concentrated stress analysis. In addition, the von-Mises stress and principal stress in the mandible are both checked to determine the best combination.

임플란트 경부 미세나사 디자인이 치밀골의 스트레인에 미치는 영향 (Influence of microthread design on marginal cortical bone strain developement: A finite element analysis)

  • 천승근;조진현;조광헌
    • 대한치과보철학회지
    • /
    • 제48권3호
    • /
    • pp.215-223
    • /
    • 2010
  • 연구 목적: 이 연구는 임플란트 식립 시 미세나사가 변연골에 발생시키는 스트레인을 조사하여, 변연골의 골유착에 장애를 줄 수 있는 골의 과부하 영역 이 미세나사에 의해 확장되는 양태를 평가하였다. 연구 재료 및 방법: 3종의 임플란트 식립 모델을 삼차원적 유한 요소분석으로 실험하였다. 대조 모델은 미세나사가 없이 주나사만 있는 $4.1{\times}10$ mm 임플란트 (Submerged model, Dentis Co, Daegu, Korea), type I은 미세나사가 있는 straight body, type II는 미세나사가 있는 7% tapered body로 설정하였다. 임플란트가 치밀골을 통과하는 3,600 단계의 식립 과정이 모사되었다. 유한요소 해석에는PC용으로 출시된DEFORM$^{TM}$ 3D (ver 5, SFTC, Columbus, OH, USA)가 사용되었다 결과:임플란트 외벽으로부터 1 mm 이내의 변연골 스트레인 영역은 대조모델에서의 4000 ${\mu}$-strain 보다 높았다. Type I 임플란트의 경우 임플란트 외벽으로부터 1-1.5 mm 영역 이내의 인접골이 과부하 영역에 속하였고, type II 임플란트의 경우에는 2 mm 이상이었다. 결론: 미세나사의 유무와 몸체의 테이퍼 유무에 따라 변연골 스트레인은 직접적인 영향을 받았고 대조모델에 비해 경부 미세나사가 있는 type I 및 type II 임플란트의 식립 시 변연골의 과부하 영역이 월등히 컸다.

Hypophosphatasia 환아의 치료 증례 (HYPOPHOSPHATASIA : CASE REPORT)

  • 박수정;이제호;최형준;김기덕;최병재
    • 대한소아치과학회지
    • /
    • 제25권3호
    • /
    • pp.555-561
    • /
    • 1998
  • 1. Hypophosphatasia는 골조직 및 치아조직의 비정상적인 석회화를 나타내는 대사장애로, 특징적 구강내 소견 인 유치의 조기탈락 양상으로 치과에서 조기진단이 가능하다. 2. 본 증례에서 상악궁 확장을 동반한 의치 제작으로 심미적, 기능적으로 양호한 결과를 얻었으며, 영구치열기 까지 장기적 관찰 및 치료가 필요할 것으로 사료된다.

  • PDF

Comparative analysis of the in vivo kinetic properties of various bone substitutes filled into a peri-implant canine defect model

  • Jingyang Kang;Masaki Shibasaki;Masahiko Terauchi;Narumi Oshibe;Katsuya Hyodo;Eriko Marukawa
    • Journal of Periodontal and Implant Science
    • /
    • 제54권2호
    • /
    • pp.96-107
    • /
    • 2024
  • Purpose: Deproteinized bovine bone or synthetic hydroxyapatite are 2 prevalent bone grafting materials used in the clinical treatment of peri-implant bone defects. However, the differences in bone formation among these materials remain unclear. This study evaluated osteogenesis kinetics in peri-implant defects using 2 types of deproteinized bovine bone (Bio-Oss® and Bio-Oss/Collagen®) and 2 types of synthetic hydroxyapatite (Apaceram-AX® and Refit®). We considered factors including newly generated bone volume; bone, osteoid, and material occupancy; and bone-to-implant contact. Methods: A beagle model with a mandibular defect was created by extracting the bilateral mandibular third and fourth premolars. Simultaneously, an implant was inserted into the defect, and the space between the implant and the surrounding bone walls was filled with Bio-Oss, Bio-Oss/Collagen, Apaceram-AX, Refit, or autologous bone. Micro-computed tomography and histological analyses were conducted at 3 and 6 months postoperatively (Refit and autologous bone were not included at the 6-month time point due to their rapid absorption). Results: All materials demonstrated excellent biocompatibility and osteoconductivity. At 3 months, Bio-Oss and Apaceram-AX exhibited significantly greater volumes of formation than the other materials, with Bio-Oss having a marginally higher amount. However, this outcome was reversed at 6 months, with no significant difference between the 2 materials at either time point. Apaceram-AX displayed notably slower bioresorption and the largest quantity of residual material at both time points. In contrast, Refit had significantly greater bioresorption, with complete resorption and rapid maturation involving cortical bone formation at the crest at 3 months, Refit demonstrated the highest mineralized tissue and osteoid occupancy after 3 months, albeit without statistical significance. Conclusions: Overall, the materials demonstrated varying post-implantation behaviors in vivo. Thus, in a clinical setting, both the properties of these materials and the specific conditions of the defects needing reinforcement should be considered to identify the most suitable material.

Three dimensional finite element analysis of the stress distribution around the mandibular posterior implant during non-working movement according to the amount of cantilever

  • Park, Ji-Man;Kim, Hyun-Joo;Park, Eun-Jin;Kim, Myung-Rae;Kim, Sun-Jong
    • The Journal of Advanced Prosthodontics
    • /
    • 제6권5호
    • /
    • pp.361-371
    • /
    • 2014
  • PURPOSE. In case of large horizontal discrepancy of alveolar ridge due to severe resorption, cantilevered crown is usually an unavoidable treatment modality. The purpose of this study was to evaluate the clinical criteria for the placement of the aforementioned implant crown. MATERIALS AND METHODS. The mandible model with 2 mm thick cortical bone and cancellous bone was fabricated from CT cross-section image. An external connection type implant was installed and cantilevered crowns with increasing offset of 3, 4, 5, 6, and 7 mm were connected. Vertical load and $30^{\circ}$ oblique load of 300 N was applied and stress around bone and implant component was analyzed. A total of 14 cases were modeled and finite element analysis was performed using COSMOS Works (Solid works Inc, USA). RESULTS. As for the location of the vertical load, the maximum stress generated on the lingual side of the implant became larger according to the increase of offset distance. When the oblique load was applied at $30^{\circ}$, the maximum stress was generated on the buccal side and its magnitude gradually decreased as the distance of the offset load increased to 5 mm. After that point, the magnitude of implant component's stress increased gradually. CONCLUSION. The results of this study suggest that for the patient with atrophied alveolar ridge following the loss of molar teeth, von-Mises stress on implant components was the lowest under the $30^{\circ}$ oblique load at the 5 mm offset point. Further studies for the various crown height and numbers of occusal points are needed to generalize the conclusion of present study.

피질골 절제술을 응용한 견치 및 대구치의 후방 견인 (Use of corticotomy for canine and molar retraction)

  • 김상철;김선영;김현숙;정혜승;김현태;조진우
    • 대한치과교정학회지
    • /
    • 제35권2호
    • /
    • pp.153-161
    • /
    • 2005
  • 빠르며 정확하고 안전한 치아이동을 목표로 삼고 있는 교정치료에서 최근 새로이 도입된 피질골 절제술과 견인 골형성술을 응용한 치아이동에 대하여 알아보았다. 특히 견치나 대구치의 후방이동은 기존의 치아이동 양식으로는 조절이 어렵고. 장기적인 기간이 불가피한 치아이동이다. 피질골 절제술과 견인 골형성술을 동반하여 상당히 효과적인 원심이동을 기할 수 있었던 증례를 통하여 적용 술식, 견인 장치 등을 논하고 그 효과를 파악하였다. 이런 술식을 통해 빠른 치아 이동과 이에 따른 전반적인 치료기간의 감소가 가능하였으며, 무리한 치아이동에서 발생할 수 있는 고정원 소실이나 치근흡수, 치주조직의 파괴 같은 부작용도 줄일 수 있었다.