• Title/Summary/Keyword: Cortical bone density

Search Result 84, Processing Time 0.025 seconds

The effects of bone density and crestal cortical bone thickness on micromotion and peri-implant bone strain distribution in an immediately loaded implant: a nonlinear finite element analysis

  • Sugiura, Tsutomu;Yamamoto, Kazuhiko;Horita, Satoshi;Murakami, Kazuhiro;Tsutsumi, Sadami;Kirita, Tadaaki
    • Journal of Periodontal and Implant Science
    • /
    • v.46 no.3
    • /
    • pp.152-165
    • /
    • 2016
  • Purpose: This study investigated the effects of bone density and crestal cortical bone thickness at the implant-placement site on micromotion (relative displacement between the implant and bone) and the peri-implant bone strain distribution under immediate-loading conditions. Methods: A three-dimensional finite element model of the posterior mandible with an implant was constructed. Various bone parameters were simulated, including low or high cancellous bone density, low or high crestal cortical bone density, and crestal cortical bone thicknesses ranging from 0.5 to 2.5 mm. Delayed- and immediate-loading conditions were simulated. A buccolingual oblique load of 200 N was applied to the top of the abutment. Results: The maximum extent of micromotion was approximately $100{\mu}m$ in the low-density cancellous bone models, whereas it was under $30{\mu}m$ in the high-density cancellous bone models. Crestal cortical bone thickness significantly affected the maximum micromotion in the low-density cancellous bone models. The minimum principal strain in the peri-implant cortical bone was affected by the density of the crestal cortical bone and cancellous bone to the same degree for both delayed and immediate loading. In the low-density cancellous bone models under immediate loading, the minimum principal strain in the peri-implant cortical bone decreased with an increase in crestal cortical bone thickness. Conclusions: Cancellous bone density may be a critical factor for avoiding excessive micromotion in immediately loaded implants. Crestal cortical bone thickness significantly affected the maximum extent of micromotion and peri-implant bone strain in simulations of low-density cancellous bone under immediate loading.

The bone density of mandible as the aging process in Koreans (한국인 연령에 따른 하악 치조골 골밀도)

  • Lee, Chul-Won;Kim, Chul-Hwan
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.37 no.6
    • /
    • pp.496-504
    • /
    • 2011
  • Introduction: This study compared the alveolar bone density of the mandible according to gender, age and position using Cone-beam computed tomography (CT). Materials and Methods: The maxillofacial CT scan data was obtained from 60 Korean patients. In addition, the alveloar bone density of 5 males and 5 females with normal occlusion aged from 10 to 70 years was measured at the buccal cortical bone, cancellous bone and lingual cortical bone, as well as at the position of the incisors, canines, premolars and molars. Results: The age-specific mean bone density was highest in patients in their third decade. The buccal cortical bone of the molars showed the highest bone density. Males in their fifties and sixties had a higher bone density in the cancellous bone in the region of the premolars and the buccal cortical bone of the molars, respectively, than females but there was no significant difference between males and females in the other parts. The cancellous bone density was highest in those in their twenties and thirties, and tended to decline up to their seventh decade. Conclusion: These results revealed a significantly different bone density according to gender, age and position in the Korean population. In addition, it is possible to predict the bone density based on these results.

Sex-, growth pattern-, and growth status-related variability in maxillary and mandibular buccal cortical thickness and density

  • Schneider, Sydney;Gandhi, Vaibhav;Upadhyay, Madhur;Allareddy, Veerasathpurush;Tadinada, Aditya;Yadav, Sumit
    • The korean journal of orthodontics
    • /
    • v.50 no.2
    • /
    • pp.108-119
    • /
    • 2020
  • Objective: The primary objective of this study was to quantitatively analyze the bone parameters (thickness and density) at four different interdental areas from the distal region of the canine to the mesial region of the second molar in the maxilla and the mandible. The secondary aim was to compare and contrast the bone parameters at these specific locations in terms of sex, growth status, and facial type. Methods: This retrospective cone-beam computed tomography (CBCT) study reviewed 290 CBCT images of patients seeking orthodontic treatment. Cortical bone thickness in millimeters (mm) and density in pixel intensity value were measured for the regions (1) between the canine and first premolar, (2) between the first and second premolars, (3) between the second premolar and first molar, and (4) between the first and second molars. At each location, the bone thickness and density were measured at distances of 2, 6, and 10 mm from the alveolar crest. Results: The sex comparison (male vs. female) in cortical bone thickness showed no significant difference (p > 0.001). The bone density in growing subjects was significantly (p < 0.001) lower than that in non-growing subjects for most locations. There was no significant difference (p > 0.001) in bone parameters in relation to facial pattern in the maxilla and mandible for most sites. Conclusions: There was no significant sex-related difference in cortical bone thickness. The buccal cortical bone density was higher in females than in males. Bone parameters were similar for subjects with hyperdivergent, hypodivergent, and normodivergent facial patterns.

Quantitative evaluation of alveolar cortical bone density in adults with different vertical facial types using cone-beam computed tomography

  • Ozdemir, Fulya;Tozlu, Murat;Cakan, Derya Germec
    • The korean journal of orthodontics
    • /
    • v.44 no.1
    • /
    • pp.36-43
    • /
    • 2014
  • Objective: The purpose of this study was to quantitatively evaluate the cortical bone densities of the maxillary and mandibular alveolar processes in adults with different vertical facial types using cone-beam computed tomography (CBCT) images. Methods: CBCT images (n = 142) of adult patients (20-45 years) were classified into hypodivergent, normodivergent, and hyperdivergent groups on the basis of linear and angular S-N/Go-Me measurements. The cortical bone densities (in Hounsfield units) at maxillary and mandibular interdental sites from the distal aspect of the canine to the mesial aspect of the second molar were measured on the images. Results: On the maxillary buccal side, female subjects in the hyperdivergent group showed significantly decreased bone density, while in the posterior region, male subjects in the hyperdivergent group displayed significantly decreased bone density when compared with corresponding subjects in the other groups (p<0.001). Furthermore, the subjects in the hyperdivergent group had significantly lower bone densities on the mandibular buccal side than hypodivergent subjects. The maxillary palatal bone density did not differ significantly among groups, but female subjects showed significantly denser palatal cortical bone. No significant difference in bone density was found between the palatal and buccal sides in the maxillary premolar region. Overall, the palatal cortical bone was denser anteriorly and buccal cortical bone was denser posteriorly. Conclusion: Adults with the hyperdivergent facial type tend to have less-dense buccal cortical bone in the maxillary and mandibular alveolar processes. Clinicians should be aware of the variability of cortical bone densities at mini-implant placement sites.

Effects of Cheonggukjang and Doenjang on Bone Loss in Ovariectomized Rats

  • Lee, Chang-Hyun;Song, Geun-Seoup;Kim, Young-Soo
    • Food Science and Biotechnology
    • /
    • v.17 no.3
    • /
    • pp.553-557
    • /
    • 2008
  • The effects of cheonggukjang and doenjang on bone mineral density, trabecular area and cortical thickness of the tibia, and serum osteocalcin level in ovariectomized rats were investigated. After 4 weeks, bone mineral density, bone trabecular area, the cortical thickness index, and serum osteocalcin level were analyzed. The cheonggukjang and doenjang diet groups showed significant prevention of ovariectomized (OVX)-related body weight gain. Whole body bone mineral density of the OVX group was significantly lower than that of the sham group, whereas the cheonggulgang and doenjang diets resulted in complete restoration of bone mineral density. Trabecular area in the proximal diaphysis and cortical thickness in the distal diaphysis of the tibia were increased significantly in the cheonggukjang and doenjang diet fed groups. The cheonggukjang and doenjang diets significantly reduced serum osteocalcin level in the OVX rats. These results suggest that cheonggukjang and doenjang might have inhibitory effects on osteoporosis, by showing accelerated bone formation in OVX rats.

Influence of Cortical Endplates on Ultrasonic Properties of Trabecular Bone (피질골판이 해면질골의 초음파 특성에 미치는 영향)

  • Kim, Yoon Mi;Lee, Kang Il
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.35 no.2
    • /
    • pp.103-111
    • /
    • 2015
  • The present study investigated the influence of thick cortical endplates on the ultrasonic properties of trabecular bone in a femur with a high fracture risk. Twelve trabecular bone samples were prepared from bovine femurs, and acrylic plates with thicknesses of 1.25, 1.80, and 2.75 mm were manufactured to simulate the cortical endplates using acrylic with a density and a sound speed similar to cortical bone. Although the thickness of the acrylic plates attached to the two sides of the trabecular bone increased, high correlations were observed between the speed of sound and the apparent bone density of the trabecular bone, with Pearson's correlation coefficients of 0.80-0.86. High correlations were also observed between the attenuation coefficient at 0.5 MHz and the apparent bone density of the trabecular bone, with Pearson's correlation coefficients of 0.84-0.91. These results suggest that the speed of sound and attenuation coefficient at a specific frequency measured in a femur with relatively thick cortical endplates compared to the calcaneus could be used as indices for predicting the bone mineral density of the femur.

An Experimental Study of Radiographic Density of Alveolar Bone and Cortical Thickness of Mandible by Osteoporosis (골다공증에 따른 치조골 방사선사진농도와 하악하연두께의 변화에 대한 연구)

  • Lee Byeong-Do
    • Imaging Science in Dentistry
    • /
    • v.30 no.4
    • /
    • pp.235-242
    • /
    • 2000
  • Purpose: To evaluate the effect of the systemic osteoporosis on radiographic density of alveolar bone and cortical thickness of mandible. Materials and Methods: The bone mineral density values of lumbar and femur were measured by dual-energy X-ray absorptiometry and T scores of lumbar, femur were obtained respectively. Radiographic densities of alveolar bones and panorama mandibular index (PMI, represents as cortical thickness) were analysed statistically according to age and T score variables. Results: The radiographic density of alveolar bone of maxillary molar showed significant difference by age and femur T group. That of mandibular molar showed significant difference between femur T group. Panorama mandibular index showed significant difference between age groups. Conclusion: The radiographic density of alvealar bones was more dependent on age and femur T than lumbar T. Cortical thickness of mandible was correlated with increasing age.

  • PDF

Pattern of buccal and palatal bone density in the maxillary premolar region: an anatomical basis of anterior-middle superior alveolar (AMSA) anesthetic technique

  • Ahad, Abdul;Haque, Ekramul;Naaz, Sabiha;Bey, Afshan;Rahman, Sajjad Abdur
    • Journal of Dental Anesthesia and Pain Medicine
    • /
    • v.20 no.6
    • /
    • pp.387-395
    • /
    • 2020
  • Background: The anterior-middle superior alveolar (AMSA) anesthetic technique has been reported to be a less traumatic alternative to several conventional nerve blocks and local infiltration for anesthesia of the maxillary teeth, their periodontium, and the palate. However, its anatomic basis remains controversial. The present study aimed to determine if the pattern of cortical and cancellous bone density in the maxillary premolar region can provide a rationale for the success of the AMSA anesthetic technique. Method: Cone-beam computed tomography scans of 66 maxillary quadrants from 34 patients (16 men and 18 women) were evaluated using a volumetric imaging software for cortical and cancellous bone densities in three interdental regions between the canine and first molar. Bone density was measured in Hounsfield units (HU) separately for the buccal cortical, palatal cortical, buccal cancellous, and palatal cancellous bones. Mean HU values were compared using the Mann-Whitney U test and one-way ANOVA with post-hoc analysis. Results: Cancellous bone density was significantly lower (P ≤ 0.001) in the palatal half than in the buccal half across all three interdental regions. However, there was no significant difference (P = 0.106) between the buccal and palatal cortical bone densities at the site of AMSA injection. No significant difference was observed between the two genders for any of the evaluated parameters. Conclusions: The palatal half of the cancellous bone had a significantly lower density than the buccal half, which could be a reason for the effective diffusion of the anesthetic solution following a palatal injection during the AMSA anesthetic technique.

The FEM Analysis on the Crestal Cortical Bone around the Implant according to the Cancellous Bone Density and Loading Positions (임프란트 매식시 해면골질의 차이에 따른 치밀골 상 응력분석)

  • Jeung, Sin-Young;Kim, Chang-Hyun
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.23 no.1
    • /
    • pp.69-78
    • /
    • 2007
  • This study was performed to compare the stress distribution pattern in the crestal cortical bone and cancellous bone using 3-dimensional finite element stress analysis when 2 different Young's modulus(high modulus, model 1; low modulus, model 2) of cancellous bone was assumed. For the analysis, a finite element model was designed to have two square-threaded implants fused together and located at first and second molar area. Stress distribution was observed when vertical load of 200N was applied at several points on the occlusal surfaces of the implants, including central fossa, points 1.5mm, 2mm, 3mm and 3.5mm buccally away from central fossa. The results were as follows; 1. In both model, the maximum Von-Mises stress in the crestal cortical bone was greater when the load was applied at the central point, points 1.5mm and 2mm buccally away from central fossa than other cases. 2. In the cortical bone around first and second molar, model 2 showed greater Von-Mises stress than model 1. It is concluded that when the occlusal contact is afforded, the distribution of stress varies depending on the density of cancellous bone and the location of loading. More favorable stress distribution is expected when the contact load is applied within the diameter of fixtures.

Effect of Cortical Bone on Acoustic Properties of Trabecular Bone in Bovine Femur In Vitro (생체 외 조건의 소 대퇴골에서 해면질골의 음향특성에 대한 피질골의 효과)

  • Hwang, Kyo Seung;Lee, Kang Il
    • The Journal of the Acoustical Society of Korea
    • /
    • v.32 no.2
    • /
    • pp.181-189
    • /
    • 2013
  • The purpose of the present study is to investigate the effect of cortical bone on acoustic properties of trabecular bone, such as speed of sound (SOS) and normalized broadband ultrasound attenuation (nBUA), in bovine femur in vitro. Twelve trabecular bone samples and three cortical bone plates with thicknesses of 1.00, 1.47, and 2.00 mm were extracted from the proximal end of two bovine femurs. The correlations between acoustic properties and trabecular apparent bone density were also examined before and after attaching a cortical bone plate to the trabecular bone samples. SOS increased linearly with increasing thickness of the cortical plate attached to one side of ultrasonic incidence of the trabecular bone samples, whereas nBUA showed a nonlinear dependence on the thickness of the cortical plate. All the SOS (r = 0.95-0.97) and nBUA (r = 0.53-0.73) measurements with and without the cortical bone plate with various thicknesses were found to exhibit high correlations with the trabecular apparent bone density. These results imply that the acoustic properties measured in the femur with lateral cortical layers in vitro can be useful indices for the prediction of trabecular bone mineral density.