• Title/Summary/Keyword: Corrugated Angle

Search Result 58, Processing Time 0.024 seconds

High-Frequency Bistatic Scattering from a Corrugated Sediment Surface

  • Cho, Hong-Sang;La, Hyoung-Sul;Yoon, Kwan-Seob;Na, Jung-Yul;Kim, Bong-Chae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.25 no.2E
    • /
    • pp.60-68
    • /
    • 2006
  • High-frequency bistatic scattering measurements from a corrugated surface were made in an acoustic water tank. First the azimuthal scattering pattern was measured from an artificially corrugated surface which has varying impedance. The corrugated surface was installed both transverse to the direction of incident wave and longitudinal to the direction of incident wave. The angle between the corrugated surface and the direction of the incident wave was about $45^{\circ}$. Second, the scattering strengths were measured from the flat sediment and the corrugated sediment. A critical angle of about $37^{\circ}$ was calculated in the acoustic water tank. The measurements were made at three fixed grazing angles: $33^{\circ}$ (lower than critical angle), $37^{\circ}$ (critical angle), and $41^{\circ}$ (higher than critical angle). The scattering angle and the grazing angle are equal in each measurement. Frequencies were from 50 kHz to 100 kHz with an increment of 1 kHz. The corrugated sediment was made transverse to the direction of the incident wave. The first measurement indicates that the scattering patterns depend on the relations between the corrugated surface and the direction of the incident wave. In the second measurement, the data measured from the flat sediment were compared to the APL-UW model and to the NRL model. The NRL model's output shows more favorable comparisons than the APL-UW model. In case of the corrugated sediment, the model and the measured data are different because the models used an isotropic wave spectrum of sediment roughness in the scattering calculations. The isotropic wave spectrum consists of $w_2$ and ${\gamma}_2$. These constants derived from sediment names or bulk size. The model which used the constants didn't consider the effect of a corrugated surface. In order to consider a corrugated surface, the constants were varied in the APL-UW model.

Seismic Behavior Investigation of the Corrugated Steel Shear Walls Considering Variations of Corrugation Geometrical Characteristics

  • Farzampour, Alireza;Mansouri, Iman;Hu, Jong Wan
    • International journal of steel structures
    • /
    • v.18 no.4
    • /
    • pp.1297-1305
    • /
    • 2018
  • The corrugated steel plate shear walls have recently been proposed to address the seismic issues associated with simple steel plate shear walls; however, stiffness, strength, and ductility of the corrugated shear walls are significantly affected by varying the corrugation geometry under seismic loading. The present study investigates steel shear walls' models with corrugated or simple infill plates subjected to monotonic and cyclic loads. The performance of the corrugated steel plate is evaluated and then compared to that of the simple steel plates by evaluating the damping ratios and energy dissipation capability. The effect of corrugation profile angle, the existence of an opening, and the corrugation subpanel length are numerically investigated after validation of the finite element modeling methodology. The results demonstrate that incorporating corrugated plates would lead to better seismic damping ratios, specifically in the case of opening existence inside of the infill plate. Specifically, the corrugation angle of $30^{\circ}$ decreases the ultimate strength, while increasing the initial stiffness and ductility. In addition, the subpanel length of 100 mm is found to be able to improve the overall performance of shear wall by providing each subpanel appropriate support for the adjacent subpanel, leading to a sufficient buckling resistance performance.

Numerical investigation of a plate-type steam generator for a small modular nuclear reactor

  • Kang, Jinhoon;Bak, Jin-Yeong;Lee, Byung Jin;Chung, Chang Kyu;Yun, Byongjo
    • Nuclear Engineering and Technology
    • /
    • v.54 no.8
    • /
    • pp.3140-3153
    • /
    • 2022
  • A numerical feasibility study was conducted to investigate the thermal-hydraulic characteristics of a steam generator with corrugated plates for a small modular reactor. Accordingly, a one-dimensional thermal-hydraulic analysis code was developed based on the existing state-of-the-art thermal-hydraulic models and correlations for corrugated plate heat exchangers. Subsequently, the pressure loss, heat transfer, and instability characteristics of the steam generator with corrugated plates were investigated according to the chevron angle and mass flux. Additionally, the characteristics of rectangular and disk-type corrugated plate steam generators with equivalent heat transfer areas were analyzed. The steam generator with disk-type corrugated plates exhibited better performance in terms of pressure loss and heat transfer rate than the rectangular type. In addition, when the mass flux decreased from the onset of boiling points, reverse gradients of the total pressure change were observed in both types. Thus, it was confirmed that Ledinegg instability could occur in the steam generator with corrugated plates. However, it was dependent on the chevron angle, and the optimal chevron angle to minimize instability was 45° under the conditions of the present analysis.

Torsion of circular open cross-section with corrugated inner and outer surface

  • Pala, Yasar;Pala, Abdullah
    • Structural Engineering and Mechanics
    • /
    • v.73 no.1
    • /
    • pp.75-82
    • /
    • 2020
  • In this study, the problem of torsion of bars with open cross section surrounded by corrugated boundaries is analyzed. An approximate analytical solution is given using perturbation technique. First, the stress analysis for circular open cross-section for arbitrary opening angle is formulated and the problem is analytically solved. Second, the open cross-section with corrugated cross section is analyzed using perturbation method. First order contributions to the stresses and the torques have been added. The results have been exemplified and compared by considering special examples.

Numerical Analysis of Heat Transfer Characteristics in Corrugated Plate Type Heat Exchanger Channel (주름형상 판형열교환기 채녈에서의 열전달 특성 수치해석적 연구)

  • 김태용;이재용;김남진;김종보
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.7
    • /
    • pp.588-594
    • /
    • 2001
  • The purpose of this study is to investigate the thermal and hydrodynamic characteristics of the channel in corrugated plate type heat exchangers numerically. Numerical work has been conducted using the Reynolds Stress Model(RSM) by utilizing the commercial finite-volume code, FLUENT. Based on this model, the dependence of heat transfer and friction factor on geometrical parameters have been investigated. It is found that larger corrugation angle give higher values of heat transfer coefficients and friction factors. As the reynolds number increases, the heat transfer coefficient also increases. It is also observed that the heat transfer coefficient reaches maximum while the friction factor stays relatively low at same corrugation angle. Through the analysis, it is found that the optimum corrugation angle for the heat exchanger performance exists. It is noted that the flow repulsions at the contact point of the two fluid streams make the low mixing more active for larger corrugation angle and high reynolds number.

  • PDF

Bending Analysis and Flexural Rigidity of Rectangular Corrugated Plates (사각 주름판의 굽힘강성 및 굽힘해석)

  • Jung, Kang;Kim, Young-Wann
    • Journal of Power System Engineering
    • /
    • v.16 no.6
    • /
    • pp.38-44
    • /
    • 2012
  • In this paper, the bending characteristics of the corrugated plates is analyzed. The trapezoidally, triangularlly and sinusoidally corrugated plates are considered. The corrugated plate is treated as an orthotropic plate that has different flexural properties in two perpendicular directions. The equivalent bending and twisting rigidities for the equivalent orthotropic plates are derived. The equivalent flexural rigidities are estimated under the following postulations: (1) The angle of continuously corrugated plate is not changed after the deformation. (2) When the pure bending moment is applied in corrugated direction of the plate, the its plane is in pure bending. Several numerical examples are analyzed with the proposed method and compared with published results.

An analysis of characteristics of corrugated horn antenna using surface impedance condition (표면 경계조건을 이용한 코러게이트 혼 안테나 특성 해석)

  • ;;Alexander Shishlov
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.21 no.6
    • /
    • pp.1587-1595
    • /
    • 1996
  • We obtained the predicted and measured results for the reflection coefficient and radiation pattern of Ka-band (20- GHz) corrugated horn, which is usually used for feeder of reflector antenna for satellite communication, using suface impedance condition. In order to predict the reture losses of corrugated horn, we analyzed propagation constant of hybrid mode in the corrugated waveguide and then obtained the total reflection coefficient using the circuti theory of multi-step transformer. We also got the radiation pattern of corrugated horn with small flare angle, considering the phase deviation and integrate transverse field on aperture. A test model of corrugated horn antenna for Ka-band designed using theory and program displayed performance and the results agree with the theoretical prediction.

  • PDF

Hysteretic performance of SPSWs with trapezoidally horizontal corrugated web-plates

  • Kalali, Hamed;Hajsadeghi, Mohammad;Zirakian, Tadeh;Alaee, Farshid J.
    • Steel and Composite Structures
    • /
    • v.19 no.2
    • /
    • pp.277-292
    • /
    • 2015
  • Previous research has shown that steel plate shear walls (SPSWs) are efficient lateral force-resisting systems against both wind and seismic loads. A properly designed SPSW can have high initial stiffness, strength, and energy absorption capacity as well as superior ductility. SPSWs have been commonly designed with unstiffened and stiffened infill plates based on economical and performance considerations. Recent introduction and application of corrugated plates with advantageous structural features has motivated the researchers to consider the employment of such elements in stiffened SPSWs with the aim of lowering the high construction cost of such high-performing systems. On this basis, this paper presents results from a numerical investigation of the hysteretic performance of SPSWs with trapezoidally corrugated infill plates. Finite element cyclic analyses are conducted on a series of flat- and corrugated-web SPSWs to examine the effects of web-plate thickness, corrugation angle, and number of corrugation half-waves on the hysteretic performance of such structural systems. Results of the parametric studies are indicative of effectiveness of increasing of the three aforementioned web-plate geometrical and corrugation parameters in improving the cyclic response and energy absorption capacity of SPSWs with trapezoidally corrugated infill plates. Increasing of the web-plate thickness and number of corrugation half-waves are found to be the most and the least effective in adjusting the hysteretic performance of such promising lateral force-resisting systems, respectively. Findings of this study also show that optimal selection of the web-plate thickness, corrugation angle, and number of corrugation half-waves along with proper design of the boundary frame members can result in high stiffness, strength, and cyclic performances of such corrugated-web SPSWs.

Design of the Shaped Offset Cassegrain Antenna System Combined with Corrugated Conical Feed Horn

  • Yang, Doo-Yeong
    • Journal of IKEEE
    • /
    • v.3 no.1 s.4
    • /
    • pp.1-10
    • /
    • 1999
  • In this paper, the design for the shaped offset cassegrain antenna system combined with corrugated feed horn is presented. First, spherical-mode wave theory is applied to the corrugated conical horn and its radiation patterns are investigated. Using the radiation patterns, design data of the corrugated conical horn are obtained by efficiency investigation of horn antenna. When the investigation is completed, the flare angle and length of the corrugated conical horn is determined. Next, the main and sub-reflector is designed using Snellis law and the conservation principle of energy. Then the uniform direction and energy density of the traveling wave at the aperture of the main-reflector is obtained. The maximum size of the main-reflector is determined by investigation of the illumination and spillover efficiency. Finally, the curvature of the main-reflector is modified to satisfy the condition of the uniform phase. From the calculated efficiencies, the designed site of the main-reflector and sub-reflector, system gain of the shaped offset cassegrain antenna has been obtained 40.5dB in Ka-band frequency. It has better characteristics than the result of SABOR with 39dB gain.

  • PDF

Effects of Corrugated Webs on the Ultimate Behavior of Horizontally Curved I-shaped Girders (파형 복부판이 수평 곡선 I형 거더의 극한 거동에 미치는 영향)

  • Kim, Seungjun;Han, Taek Hee;Won, Deok Hee;Kang, Young Jong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.4
    • /
    • pp.1327-1336
    • /
    • 2013
  • In this study, the effects of corrugated webs on the ultimate behavior of horizontally curved I-shaped girders are investigated. Because of the geometric characteristics of corrugated plates, corrugated webs can be used for enhancing torsional and warping stiffness of plate girders. Many researches have been conducted to study the effects of corrugated webs on the ultimate behavior of straight girders. But, the studies of the ultimate behavior of horizontally curved girders with corrugated webs, which generally show out-of plane behavior manly, have been rarely performed so far. By performing inelastic-nonlinear analysis, the ultimate behavior of curved girders with corrugated webs is studied in this paper. Laterally unsupported length and subtended angle of girders, and length of height of corrugation of webs are considered as the geometric parameters which would be expected to affect the ultimate behavior. By this analytical study with considering the geometric parameters, the changes of ultimate behavior and load carrying capacity of curved girders with corrugated webs are investigated. Also, the effects of corrugated webs on the increase of load carrying capacity for curved girders are studied with comparing to the capacity of general curved girders with flat webs. According to the analytical results, corrugated webs can be used to increase the ultimate load carrying capacity of curved girders, because of their high torsional and warping stiffness. But, it is also indicated that they may decrease the load carrying capacity of curved girders which have relatively small subtended angle or initial curvature, because of an accordion effect.