• Title/Summary/Keyword: Corrosive environment

Search Result 238, Processing Time 0.03 seconds

Evaluation of Life Time for Anti-Corrosive Methods for Marine Steel Sheet by Cyclic Corrosion Test (실내 가속부식시험을 통한 해양 강관합성 말뚝의 방식 기법 수명 평가)

  • Park, J.W.;Lee, J.G.;Lee, K.W.;Kim, J.H.;Jung, M.K.;Lee, J.H.
    • Corrosion Science and Technology
    • /
    • v.8 no.6
    • /
    • pp.243-250
    • /
    • 2009
  • When a steel sheet pipe applied to marine environment, an anti-corrosive coating should be treated to obtain long-term life-time for steels, especially, splash zone. Although anti-corrosive property of coatings is required to be tested in real marine environment, it is difficult because of long test time such as 20 years or more time. Therefore, we used cyclic corrosion tester in a laboratory, which has similar conditions with salt-dry-wet process such as real marine environment. Anti-corrosive properties of the coatings and two steels were tested their anti-corrosive properties under cyclic corrosion test conditions(KS D ISO 14993) and the results were compared with estimate life-time in real marine environment. According to cyclic corrosion test, accelerated corrosive factor of each anti-corrosive coating was investigated accelerated corrosive factor from impedance with EIS method. Accelerated corrosive factor of type SS400 carbon steel and A690 was also investigated their accelerated corrosive factor from the regression curves of weigh loss results. One of the anti-corrosive coatings showed about 50 years life-time compared with standard sample life-time. Carbon steel SS400 showed from 0.1 mm/yr to 0.06 mm/yr as its corrosion rate.

Anti-Corrosion Characteristics of Steel Structures with Polyaniline Anti-Corrosive Coatings (강 구조물에 대한 폴리아닐린 함유도료의 방청특성)

  • Song, Min-Kyung;Kong, Seung-Dae;Oh, Eun-Ha;Yoon, Hun-Cheol;Kim, Yoon-Shin;Im, Ho-Sub
    • Journal of Environmental Health Sciences
    • /
    • v.36 no.3
    • /
    • pp.236-246
    • /
    • 2010
  • In preparative anti-corrosive coating experiments, polyaniline was obtained by reacting an oxidizing agent with the monomer aniline. Further, the primer coating was prepared using a variety of widely-used materials such as urethane resin. For the top coating, epoxy resin and acrylic urethane resin were used. Characteristics of the coatings were assessed according to KS and ASTM specifications, and the structure of the polyaniline was characterized using FT-IR and TGA. For analysis of anti-corrosive properties in salt-spray experiments, measurements of the oxidation state of iron and surface atomic analysis were conducted using XPS and SEM-EDX. Unlike general anti-corrosive coatings which exhibit anti-corrosive effects only as a primer coating, the anti-corrosive coatings using polyaniline as the anti-corrosive pigment showed a marked synergistic effect with the top coatings. In other words, the top coatings not only produce a fine view effect, but also increase, through interaction with the primer coatings, the resistance to diffusion of corrosive factors from the external environment. It was also found that, unlike the heavy metal oxide-forming layer of the passive barrier alone, the polyaniline anti-corrosive pigment oxidized iron at the interface with the iron substrate to form a passive barrier in the oxidic layer, and itself formed a potential barrier layer with anti-corrosive factors from the external environment. Although the passive layer was damaged, the damaged area did not become completely oxidized iron; on the contrary, it showed a tendency to reduction. This can be interpreted such that a passive layer is formed again on the damaged area, and that at the same time there is a tendency to self-healing.

Design of bars in tension or compression exposed to a corrosive environment

  • Fridman, Mark M.;Elishakoff, Isaac
    • Ocean Systems Engineering
    • /
    • v.5 no.1
    • /
    • pp.21-30
    • /
    • 2015
  • This study is devoted to the optimal design of compressed bars under axial tensile or compressive forces and exposed to a corrosive environment. Dolinskii's linear stress corrosion model is adopted for analysis. Analytical and numerical results are derived for optimal variation of the cross-sectional area of the bar along its axis.

A Study on the Fatigue Crack Growth Behavior in Ti-6Al-4V Alloy(I) (Ti-6Al-4V의 피로균열성장거동에 관한 연구(I))

  • 우흥식;한지원
    • Journal of the Korean Society of Safety
    • /
    • v.16 no.4
    • /
    • pp.52-57
    • /
    • 2001
  • Fatigue crack growth behaviour of Ti-6A-4V alloy is investigated in air and salt solution environment at room temperature and $200^{\circ}C$. Fatigue crack growth rate is blown to be fast for the formation of corrosive product in hot salt environment. For the effect on corrosion fatigue crack growth behaviour of region II. fatigue crack growth rate in atmosphere had a little gap to both case, $200^{\circ}C$ and room temperature. However, it showed very fast tendency in salt corrosive atmosphere, and it was remarkably accelerated in $200^{\circ}C$ temperature salt environment. When $\Delta$K was approximately 30MPa(equation omitted), fatigue crack growth rate had a little difference between at room temperature and at $200^{\circ}C$ high temperature, however in case of salt corrosive environment the room temperature was 3.5 times Inter and $200^{\circ}C$ high temperature for 16 times than air environment respectively.

  • PDF

Characteristics of Polyaniline Anti-Corrosive Coatings with Primer and Top Coating Resins (하도 및 상도 수지에 따른 폴리아닐린 방청도료의 특성)

  • Kim, Tae-Ok;Kong, Seung-Dae;Park, Jin-U
    • Journal of the Korean Applied Science and Technology
    • /
    • v.24 no.4
    • /
    • pp.399-409
    • /
    • 2007
  • Characteristics of polyaniline anti-corrosive coatings with various primer coating resins(epoxy resin, urethane resin, and others) and top coating resins(epoxy and acrylic urethane resins) were investigated through adhesion, acid resistance, alkaline resistance, water resistance, and anti-corrosion tests. As a result, the anti-corrosive properties of the prepared coatings using polyaniline varied with the types of primer and top coating resins. In this condition, the properties of adhesion, chemical resistance, and water resistance were found to be very satisfactory when using emeraldine base (EB) of polyaniline blended with single-packaged urethane and acrylic urethane resins as the primer coatings, and using acrylic urethane resin as the top coatings. Also, the anti-corrosive function of these anti-corrosive coatings was well preserved for 1000 hr in the salt spray experiment.

The Regulations and Guidelines for Management of Corrosive Water and Pipe Corrosion in Drinking Water Distribution System in North America (상수원 관망 부식 제어를 위한 부식성 수질 관리: 북미지역 관리 사례 및 국외 현황)

  • Kim, Minhee;Hyun, Seunghun;Lee, Won-Seok;Loretta, Y. Li
    • Journal of Korean Society on Water Environment
    • /
    • v.33 no.3
    • /
    • pp.359-369
    • /
    • 2017
  • Water distribution systems supply drinking water to consumers' taps. Internal corrosion of metallic pipe used in drinking water distribution systems has reduced water quality and led to increased levels of toxic heavy metals such as lead, copper and nickel. These problems have been experienced to varying degrees by water utilities in many countries. North America has successfully managed and controlled pipe corrosion and corrosive water in water distribution system based on various policies, regulations and rules. Practical and engineering guidelines for evaluation of pipe corrosion and determination of treatment options are also provided to assist drinking water supplies. In addition, the corrosion mechanism in water distribution systems, such as the complex effects of physical and chemical parameters on the corrosion pipes has been improved to accurately predict corrosion rates of metallic pipes in actual water distribution systems. This paper reviews various regulations, policy statement, and treatment produces on controlling corrosion in drinking water distribution systems in US and Canada and then offers suggestion for management of corrosive water and pipe corrosion in drinking water distribution system in Korea.

An Experimental Study on Corrosion Fatigue Strength of TMCP Steel in Consideration of NaCl Salinity (염분농도변화에 따른 TMCP강의 부식피로강도에 관한 실험적 연구)

  • 강성원;김철현;이해우
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.40 no.3
    • /
    • pp.54-60
    • /
    • 2003
  • Fatigue strength of offshore structures or ship structures is significantly decreased due to corrosive environment condition such as sea water and/or coal, crude oil of cargoes, compared to that of on shore structures. In corrosive environment, fatigue strength of structures also depends on characteristics of weld material heat affected zone(HAZ). In this research work, rotary bending fatigue tests of parent material and HAZ of TMCP steel were performed in order to investigate the initiation and propagation of cracks both in air and in NaCl solution. Comparison of fatigue strength In relation with the salinity of NaCl were carried out as well. According to the test results weld material or HAZ of TMCP steel showed higher fatigue strength than that of the parent material. The fatigue strength of TMCP steel decreases drastically in NaCl solution compared to that of in air environment. In particular, more reduced fatigue strength is observed in 1% NaCl solution than in 3% NaCl solution.

Evaluation of Corrosion Properties of Several Metals in Waters for Reference Standard on Corrosion Rate - I. Andong Area (부식속도에 대한 참조 표준 작성을 위한 수환경에 따른 각종 금속의 부식특성 평가 - I. 안동지역)

  • Shim, G.T.;Kwon, Y.H.;Kim, Y.S.
    • Corrosion Science and Technology
    • /
    • v.8 no.6
    • /
    • pp.238-242
    • /
    • 2009
  • Corrosion of metallic materials occurs by the reaction with corrosive environment. In general, corrosive environments are classified as atmospheric, marine, soil etc. and regardless of any corrosive environments, reduction of thickness and cracking and degradation are induced by corrosion. Among several corrosive environments, knowing the atmospheric corrosiveness of a region, city, or country is considered of ultimate importance for major industrialists and investors who require knowledge of the corrosive impact of the atmosphere on everyday materials such as carbon steel, weathering steel, zinc, copper, and aluminium. This is why the atmospheric corrosiveness map is needed. This paper dealt with corrosion properties between several waters in the region and carbon steel, weathering steel, galvanized steel, pure copper, and pure aluminium at the representative rural area of Korea - Andong.

Effects of Acid Fog Environment on the Corrosion Fatigue Strength of Structural Steel SM55C (기계구조용강 SM55C의 부식피로강도에 미치는 산성안개 분위기의 영향)

  • 김진학;김민건
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.5
    • /
    • pp.181-187
    • /
    • 2000
  • Fatigue tests under acid fog environment were carried out to investigate the effect of acid fog on the corrosion fatigue strength of SM55C in comparison with distilled water. Main results obtained are as follows. The fatigue strength of SM55C under acid fog environment are remarkably decreased as compared with that of distilled water specimen. The corrosive effect of acid fog on fatigue strength are more serious under low stress amplitude level than under high stress amplitude level, and this leads to continuous reduction of fatigue strength. Under acid fog environment in early stage of crack growth. because the corrosive components dissolve the crack face offensively. the unstable fracture surface appears. But, the stable corrosion precipitation and products layer are formed on the fracture surface in accordance with the time pass.

  • PDF

Synthesis of Ceramic Protective Coatings for Chemical Plant Parts Operated in Hi-temperature and Corrosive/Erosive Environment

  • Son, M.C.;Park, J.R.;Hong, K.T.;Seok, H.K.
    • Corrosion Science and Technology
    • /
    • v.4 no.1
    • /
    • pp.33-38
    • /
    • 2005
  • Some feasibility studies are conducted to produce an advanced ceramic coating, which reveals superior chemical and mechanical strength, on metal base structure used in chemical plant. This advanced coating on metallic frame can replace ceramic delivery pipe and reaction chamber used in chemical plant, which are operated in hi-temperature and corrosive/erosive environment. An dual spraying is adopted to reduce the residual stress in order to increase the coating thickness and the residual stress is estimated by in-situ manner. Then new methodology is tried to form special coating of yttrium aluminum garnet(YAG), which reveals hi-strength and low-creep rates at hi-temperature, superior anti-corrosion property, hi-stability against Alkali-Vapor corrosion, and so on, on iron base structure. To verify the formation of YAG during thermal spraying, XRD(X ray diffraction) technique was used.