• Title/Summary/Keyword: Corrosion remaining life

Search Result 54, Processing Time 0.022 seconds

A Study on NDT Techniques for Evaluation of Corrosion in Multi-layered Conductive Structures of Urban Railroad Car of the paper (도시철도차량의 다층 구조물 부식 측정을 위한 비파괴 기법 연구)

  • Lee, Chan-Woo;Chung, Jung-Duk;Song, Sung-Jin
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.2691-2696
    • /
    • 2011
  • THE CARBODY AND BOGIE FRAME OF AN URBAN RAILWAY VEHICLE CONSIST OF MULTI-LAYERED WELDING STRUCTURE. IN KOREA ENDURANCE LIMIT OF AN URBAN RAILWAY VEHICLE IS STSTED IN THE RULE OF MANAGING URBAN RAILWAY VEHICLE UNDER THE LAW OF URBAN RAILWAY. IN KOREA AN URBAN RAILWAY VEHICLE IS DESIGNED AND MADE TO KEEP ITS QUALITY OVER 25 YEARS. WHEN THE RAILWAY VEHICLE BECOMES 25 YEARS OLD, CORROSION OF CARBODY AND UNDER FRAME OF A RAILWAY VEHICLE IS EVALUATED ACCORDING TO THE NON-DESTRUCTIVE TESTING. IT CAN BE USED AS LONG AS 40 YEARS. IT IS STATED IN THE ARTICLE 4 'THE METHOD AND STANDARDS OF PRECISE DIAGNOSIS' UNDER THE RULE OF MANAGING RAILWAY VEHICLE IN KOREA. SO, IN THIS STUDY, WE HAVE INVESTIGATED PERFORMANCE OF PULSED EDDY CURRENT TESTING METHOD BY MEASURING THICKNESS VARIATION OF FABRICATE OF CARBODY AND UNDER FRAME FOR URBAN RAILROAD CAR. AND THEM, THE PROCESS OF EVALUATING REMAINING LIFE ACCORDING TO TESTING OF CORROSION AMOUNT IS INTRODUCED.

  • PDF

A Study on Prediction of Metal Loss by Flow-Accelerated Corrosion in the CANDU NPP Secondary Piping Systems (침부식에 의한 CANDU형 원전 2차측 배관의 감육 예측에 관한 연구)

  • Shim, S.H.;Song, J.S.;Yoon, K.B.;Hwang, K.M.;Jin, T.E.;Lee, S.H.;Kim, W.S.
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.616-621
    • /
    • 2001
  • Flow-accelerated corrosion(FAC) is a phenomenon that results in metal loss from piping, vessels, and equipment made of carbon steel. FAC occurs only under certain conditions of flow, chemistry, geometry, and material. Unfortunately, those conditions are in much of the high-energy piping in nuclear and fossil-fueled power plants. Also, for domestic NPP secondary pipings whose operating time become longer, more evidences of FAC have been reported. The authors are studying on FAC management using CHECWORKS, computer code developed by EPRI. This paper is on the prediction results of metal loss by FAC in the one of CANDU type NPP secondary piping systems.

  • PDF

Crack Width Prediction in Concrete Bridges Considering Bond Resistances affected by Corrosion (부식에 의한 부착저항감소를 고려한 콘크리트 교량의 균열폭 예측)

  • Cho, Tae-Jun;Cho, Hyo-Nam;Park, Mi-Yun
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.4 s.94
    • /
    • pp.543-552
    • /
    • 2006
  • The current design for crack width control in concrete bridges is incomplete in analytical models. As one of the important serviceability limit states, the crack width be considered with the quantitative prediction of the initiation and propagation of corrosion and corrosion-induced cracking. A serviceability limit state of cracking can be affected by the combined effects of bond, slip, cracking, and corrosion of the reinforcing elements. Considering life span of concrete bridges, an improved prediction of crack width affected by time-dependent general corrosion has been proposed for the crack control design. The developed corrosion models and crack width prediction equation can be used for the design and the maintenance of prestressed and non-prestressed reinforcements by varying time, w/c, cover depth, and geometries of the sections. It can also be used as the rational criteria for the maintenance of existing concrete bridges and the prediction of remaining life of concrete structures.

Critical Design Issues on the Cathodic Protection Systems of Ships

  • Lee, Ho Il;Lee, Chul Hwan;Jung, Mong Kyu;Baek, Kwang Ki
    • Corrosion Science and Technology
    • /
    • v.6 no.3
    • /
    • pp.90-95
    • /
    • 2007
  • Cathodic protection technology has been widely used on ship's outer hull and inner side of ballast water tanks as a supplementary corrosion protection measure in combination with protective organic coatings. Impressed current cathodic protection system is typically opted for the ship's hull and, sacrificial anode system, for ballast water tanks. The anticipation and interest in cathodic protection system for ships has been surprisingly low-eyed to date in comparison with protective coatings. Computational analysis for the verification of cathodic protection design has been tried sometimes for offshore marine structures, however, in commercial shipbuilding section, decades old design practice is still applied, and no systematic or analytical verification work has been done for that. In this respect, over-rotection from un-erified initial design protocol has been also concerned by several experts. Especially, it was frequently reported in sacrificial anode system that even after full design life time, anode was remaining nearly intact. Another issue for impressed current system, for example, is that the anode shield area design for ship's outer hull should be compromised with actual application situation, because the state-of-the-art design equation is quite impractical from the applicator's stand. Besides that, in this study, some other critical design issues for sacrificial anode and impressed current cathodic protection system were discussed.

An Assesment of the Gas Pipeline Reliability Using Corrosion based Composite Failure (부식기반 복합고장을 고려한 가스배관의 신뢰도 평가)

  • Kim, Seong-Jun;Kim, Dohyun;Kim, Woosik;Kim, Young-Pyo;Kim, Cheolman
    • Journal of Korean Society for Quality Management
    • /
    • v.47 no.4
    • /
    • pp.739-754
    • /
    • 2019
  • Purpose: The purpose of this paper is to develop a reliability estimation procedure for the underground gas pipeline in the presence of corrosion defects. Methods: Corrosion is one of the major causes of the gas pipeline failure. Several failure forms caused by corrosion have been studied. Among them, small leak and burst are considered in this paper. The composite failure of the two is defined by limit state function, and it is expressed with pipe parameters. Given a modified corrosion dataset, in order to obtain reliability estimations, the method of first order and second moment is adopted because of its simplicity. The computation processes are conducted with MATLAB coding. Results: According to numerical results, the probability of composite failure is affected by both small leak and burst. In particular, when corrosion depth stays at low level, it is consistent with the probability of burst failure. On the contrary, it is more influenced by the small leak failure as corrosion depth is increasing. In such case, the probability of composite failure is fast approaching to the safety limit. Conclusion: By considering the composite failure, more practical predictions of remaining life can be obtained. The proposed method is useful for maintenance planning of the underground gas pipeline.

Durability Prediction for Concrete Structures Exposed to Chloride Attack Using a Bayesian Approach (베이지안 기법을 이용한 염해 콘크리트구조물의 내구성 예측)

  • Jung, Hyun-Jun;Zi, Goang-Seup;Kong, Jung-Sik;Kang, Jin-Gu
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.1
    • /
    • pp.77-88
    • /
    • 2008
  • This paper provides a new approach for predicting the corrosion resistivity of reinforced concrete structures exposed to chloride attack. In this method, the prediction can be updated successively by a Bayesian theory when additional data are available. The stochastic properties of model parameters are explicitly taken into account into the model. To simplify the procedure of the model, the probability of the durability limit is determined from the samples obtained from the Latin hypercube sampling technique. The new method may be very useful in designing important concrete structures and help to predict the remaining service life of existing concrete structures which have been monitored.

Prediction of the remaining service life of existing concrete bridges in infrastructural networks based on carbonation and chloride ingress

  • Zambon, Ivan;Vidovic, Anja;Strauss, Alfred;Matos, Jose;Friedl, Norbert
    • Smart Structures and Systems
    • /
    • v.21 no.3
    • /
    • pp.305-320
    • /
    • 2018
  • The second half of the 20th century was marked with a significant raise in amount of railway bridges in Austria made of reinforced concrete. Today, many of these bridges are slowly approaching the end of their envisaged service life. Current methodology of assessment and evaluation of structural condition is based on visual inspections, which, due to its subjectivity, can lead to delayed interventions, irreparable damages and additional costs. Thus, to support engineers in the process of structural evaluation and prediction of the remaining service life, the Austrian Federal Railways (${\ddot{O}}$ BB) commissioned the formation of a concept for an anticipatory life cycle management of engineering structures. The part concerning concrete bridges consisted of forming a bridge management system (BMS) in a form of a web-based analysis tool, known as the LeCIE_tool. Contrary to most BMSs, where prediction of a condition is based on Markovian models, in the LeCIE_tool, the time-dependent deterioration mechanisms of chloride- and carbonation-induced corrosion are used as the most common deterioration processes in transportation infrastructure. Hence, the main aim of this article is to describe the background of the introduced tool, with a discussion on exposure classes and crucial parameters of chloride ingress and carbonation models. Moreover, the article presents a verification of the generated analysis tool through service life prediction on a dozen of bridges of the Austrian railway network, as well as a case study with a more detailed description and implementation of the concept applied.

Development of a Life Prediction Technology for Underground Metallic Structures Applied Cathodic Protection System (전기방식설비가 적용된 지하금속매설물의 수명예측기법 개발)

  • Ha, Tae-Hyun;Kim, Dae-Kyeong;Bae, Jeong-Hyo;Lee, Hyun-Goo;Choi, Sang-Bong;Jeong, Seong-Hwan
    • Proceedings of the KIEE Conference
    • /
    • 2000.07d
    • /
    • pp.3172-3174
    • /
    • 2000
  • It is necessary to collect and analyze the corrosion date to control the underground metallic structures systematically. It can be possible to predict the remaining life of underground metallic structures. In this paper we describe the life prediction technology of cathodic protection systems and underground metallic structures without a cathodic protection system.

  • PDF

Experimental Study on Rupturing of Artificial Flaw of Pipes for Life Prediction of Underground High Pressure Gas Pipes (지하매설 고압가스배관의 수명예측을 위한 인위결함 배관의 파열실험)

  • Lee, Kyung-eun;Kim, Jeong Hwan;Ha, Yu-jin;Kil, Seong-Hee;Jo, Young-do;Moon, Jong-Sam
    • Journal of the Korean Institute of Gas
    • /
    • v.22 no.5
    • /
    • pp.62-71
    • /
    • 2018
  • According to own investigation conducted by Korea Gas Safety Corporation Gas Safety Research Institute in 2017, the length of underground pipes in domestic high-pressure gas pipelines is approximately 770km, of which 84% is buried in Ulsan and Yeosu industrial complexes. In particular, 56% of underground pipelines have been in operation for more than 20 years. This suggests urgent management of buried high pressure gas pipelines. PHMSA in US and EGIG in Europe, major causes of accidents in buried gas pipelines are reported as third party damage, external corrosion and loss of pipe wall thickness. Therefore, it is important to evaluate whether the defects affect the remaining life of the pipe when defects occur in the pipe. DNV and ASME have evaluated the residual strength of pipelines through the hydraulic rupture test using pipe specimens with artifact flaws. Once the operating pressure is known through the residual strength of the pipe, the wall thickness at the point at which the pipe ruptures is calculated. If we know the accurate rate of corrosion growth, we can predict the remaining life of pipe. In the study, we carried out experiments with A53 Grade.B and A106 Grade.B, which account for 80% of domestic buried pipes. In order to modify the existing model equation, specimens with a defect depth of 80% to 90% was tested, and a formula expressing the relationship between defect and residual strength was made.

Prediction Model of Remaining Service Life of Concrete for Irrigation Structures by Measuring Carbonation (중성화 측정을 통한 콘크리트의 잔존수명 예측 모델)

  • Lee, Joon-Gu;Park, Kwang-Soo;Kim, Han-Joung;Lee, Joung-Jae
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.4
    • /
    • pp.529-540
    • /
    • 2003
  • Recently, the researches on the durability design of concrete structures have been studied. As the examples, models to evaluate the service life prediction of the structure have been developed. The purpose of this article is to develop the model for predicting remaining service life. The final aim is to provide the user time for repairing the concrete structures. In addition, it makes possible to maintain the concrete structure economically. 70 reservoirs out of the inland concrete structures were selected and concrete structures of their components were surveyed. Two methods were used for measuring carbonation; TG/DTA method and Phenolphtalein indicator and, the value of pH was measured by the pH meter, After deriving correlations of calcium carbonate and used year, duration from completion year to 2002, pH value, and concrete cover depth the model was developed for predicting remaining service life by measuring data as small as possible. The conventional models had been developed on the basis of experiment data obtained from the restricted lab environment like as carbon gas exposure. On the other hand this model was developed on the basis of measuring data obtained from the real field that the complex deterioration actions are occurred such as freezing and thawing, carbonation, steel corrosion, and so on. The reliability of the developed model will be evaluated high in this point and this model can help to maintain concrete structures economically by providing the manager time to repair the deteriorated concrete structures in site of facility management.