• Title/Summary/Keyword: Corrosion products

Search Result 387, Processing Time 0.025 seconds

Anaerobic Corrosion Properties of Sangpyeongtongbo Excavated at Bigyeongdo, Seosan (서산 비경도 출수 상평통보의 혐기성 부식 특성)

  • Kim, Kyu Been;Chung, Kwang Yong
    • Journal of Conservation Science
    • /
    • v.33 no.3
    • /
    • pp.167-179
    • /
    • 2017
  • In this study, Sangpyeontongbo excavated at Bigyeongdo, Seosan, were investigated to determine the components of the corrosion products that were formed while they were buried underwater in an anaerobic environment. The causes of corrosion product formation were also determined. Microstructure observation, element mapping, principle component analysis for each year, and the detection of corrosion products were carried out. Results indicate that the concretions of corrosion products on the surface are needle-, hexahedral-, and octahedral-shaped; Pb, Cu, and S were among the elements detected. The Cu-S layer was clearly verified using element mapping. An analysis of major elements for each layer showed that Cu, S, and Pb were present and that most Zn was eliminated. The corrosion products detected were $PbCO_3$ (concretion) and $Cu_{1.96}S$ (metal). Accordingly, the anaerobic corrosion properties of Sangpyeongtongbo are summarized as follows: dezincification, copper sulfide, and lead compound.

A Study on Corrosion Product Behavior Prediction for Domestic PWR Primary System by using CRUDTRAN (CRUDTRAN을 이용한 국내 PWR 1차계통내 부식생성물 거동예측에 관한 연구)

  • Song, Jong Soon;Yoon, Tae-Bin;Lee, Sang-Heon
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.13 no.4
    • /
    • pp.253-262
    • /
    • 2015
  • Radionuclide deposited on the surface of several internal and external systems in a nuclear power plant is created by the activation of corrosion products from nuclear reactor structural materials and fission products. Especially, the constant contact between water and the surface corrodes the inside where primary system makes coolants and corrosion products mixed. Also, these are circulated along the systems. For comparing models, CRUDTRAN, DISER, MIGA-RT and CPAIR codes are analyzed to predict the quantity of radionuclide and corrosion product of primary reactor that are used at the stage of designing. The corrosion products behavior of domestic PWR primary system was predicted by using CRUDTRAN. This study aims to increase the reliability of corrosion product evaluation model by comparing the actual values and calculated values with the data of a Westing House-type Nuclear Power Plant.

Effect of 20 % EDTA Aqueous Solution on Defective Tubes (Alloy600) in High Temperature Chemical Cleaning Environments (고온화학세정환경에서 20 % EDTA 용액이 결함 전열관 (Alloy600)에 미치는 영향)

  • Kwon, Hyuk-chul
    • Corrosion Science and Technology
    • /
    • v.15 no.2
    • /
    • pp.84-91
    • /
    • 2016
  • The transport and deposition of corrosion products in pressurized water nuclear reactor (PWR) steam generators have led to corrosion (SCC, denting etc.) problems. Lancing, mechanical cleaning and chemical cleaning have been used to reduce these problems. The methods of lancing and mechanical cleaning have limitations in removing corrosion products due to the structure of steam generator tubes. But high temperature chemical cleaning (HTCC) with EDTA is the most effective method to remove corrosion products regardless of the structure. However, EDTA in chemical cleaning aqueous solution and chemical cleaning environments affects the integrity of materials used in steam generators. The nuclear power plants have to perform the pre-test (also called as qualification test (QT)) that confirms the effect on the integrity of materials after HTCC. This is one of the series studies that assess the effect, and this study determines the effects of 20 % EDTA aqueous solution on defective tubes in high temperature chemical cleaning environments. The depth and magnitude of defects in steam generator (SG) tubes were measured by eddy current test (ECT) signals. Surface analysis and magnitude of defects were performed by using SEM/EDS. Corrosion rate was assessed by weight loss of specimens. The ECT signals (potential and depth %) of defective tubes increased marginally. But the lengths of defects, oxides on the surface and weights of specimens did not change. The average corrosion rate of standard corrosion specimens was negligible. But the surfaces on specimens showed traces of etching. The depth of etching showed a range on the nanometer. After comprehensive evaluation of all the results, it is concluded that 20 % EDTA aqueous solution in high temperature chemical cleaning environments does not have a negative effect on defective tubes.

OPTIMIZATION OF VARIABLES AFFECTING CORROSION RESISTANCE OF VACUUM SINTERED STAINLESS STEELS

  • Klar, Erhard;Samal, Prasan
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 1995.11a
    • /
    • pp.9-9
    • /
    • 1995
  • MATERIAL AND PROCESS VARIABLES THAT STRONGLY AFFECT THE CORROSION RESISTANCE OF PA4 STAINLESS STEELS, INCLUDE : ALLOY COMPOSITION, POWDER CLEANLINESS, NITROGEN, OXYGEN AND GARBON CONTENTS, CHROMIUM DEPLETION DUE TO SURFACE EVAPORATION AND SINTERED DENSITY. THE OPTIMUM PROCESS PARAMETERS FOR DELUBRICATION AND SINTERING THAT RESULT IN LOWEST LEVELS OF NITROGEN, OXYGEN AND CARBON AND MINIMUM LEVELS OF CHROMIUM DEPLETION WILL BE PRESENTED, FOR A NUMBER OF AUSTENTIC AND FERRITIC STAINLESS STEELS. THE EFFECT OF SINTERED DENSITY ON THE CORROSION RESISTANCE OF BOTH AUSTENITIC AND FERRITIC GRADES OF STAINLESS STEEL WILL ALSO BE COVERED.

  • PDF

Effect of Trace Amount of Ca on Corrosion Resistance of Solutionized Mg-4%Zn Alloy (용체화처리된 Mg-4%Zn 합금의 부식 저항성에 미치는 미량 Ca 첨가의 영향)

  • Jun, Joong-Hwan;Hwang, In-Je
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.29 no.4
    • /
    • pp.168-175
    • /
    • 2016
  • Influence of trace amount of Ca addition on the corrosion resistance was comparatively investigated in solutionized Mg-4%Zn and Mg-4%Zn-0.1%Ca alloys. In as-cast state, the alloys were characterized by primary ${\alpha}-(Mg)$ dendrite with MgZn intermetallic compound particles. After solution-treatment, both alloys consisted of single ${\alpha}-(Mg)$ phase by dissolution of the compound particles into the matrix. It was found from the immersion and electrochemical corrosion tests that the Mg-4%Zn alloy had better corrosion resistance than the Mg-4%Zn-0.1%Ca alloy. Morphological and compositional analyses on the surface corrosion products indicate that the incorporation of Ca oxide with low PBR value into the surface corrosion products would be responsible for the decreased corrosion resistance of the Ca-containing alloy.

Application of Neural Networks in Aluminum Corrosion

  • Powers, John;Ali, M. Masoom
    • Journal of the Korean Data and Information Science Society
    • /
    • v.11 no.2
    • /
    • pp.157-172
    • /
    • 2000
  • Metal containers represent a situation where a specific metal is exposed to a wide variety of electrolytes of varying degrees of corrosivity. For example, hundreds, if not thousands of different products are packaged in an aluminum beverage can. These products vary in pH, chloride concentration and other natural or artificial ingredients which can effect the type and severity of potential corrosion. Both localized (perforation) and uniform corrosion (metal dissolution without the onset of pitting) may occur in the can. A quick test or series of tests which could predict the propensity towards both types of corrosion would be useful to the manufacturer. Electrochemical noise data is used to detect the onset and continuation of pitting corrosion. Specific noise parameters such as the noise resistance (the potential noise divided by the current noise) have been used to both detect pitting corrosion and also to estimate the pitting severity. The utility of noise resistance and other electrochemical parameters has been explored through the application of artificial neural networks. The versatility of artificial neural networks is further demonstrated by combing electrochemical data with electrolyte properties such as pH and chloride concentration to predict both the severity of both localized and uniform corrosion.

  • PDF

Monitoring of Initial Stages of Atmospheric Zinc Corrosion in Simulated Acid Rain Solution under Wet-dry Cyclic Conditions

  • EL-Mahdy, Gamal A.;Kim, Kwang B.
    • Corrosion Science and Technology
    • /
    • v.3 no.6
    • /
    • pp.251-256
    • /
    • 2004
  • Exposure of zinc samples in simulated acid rain solution (SARS) was investigated under a periodic wet-dry conditions using an AC impedance technique. The periodic wet and dry exposure consisted of the immersion of zinc samples in SARS for one hour followed by exposure to 7 hours drying at 60% RH. Phases of the corrosion products were indentified by X-ray diffraction (XRD). The influence of relative humdiity (RH), temperature, and surface inclination on the atmospheric corrosion of zinc is described. The reciprocal of polarization resistance (1/Rp) decreases rapidly during the initial stages then slowly and eventually attains a steady state as exposure time progresses. The average of reciprocal of polarization resistance per cycle, (ARPR) was calculated and found to decrease as number of exposure cycle increases. An increase of temperature enhances the corrsion rate of zinc. The values of ARPR, of a sample inclined at 30 o are lower than those for a sample oriented horizontally. The experiment result shows a pronounced dependence of reciprocal of polarization resistance on RH. Exposure in the presence of carbonate anions gives rise to more protective corrosion products than in nitrate anion solution. The corrosion mechanism during the initial stages of atmospheric zinc corrosion under wet-dry cyclic conditions is suggested.

Modeling cover cracking due to rebar corrosion in RC members

  • Allampallewar, Satish B.;Srividya, A.
    • Structural Engineering and Mechanics
    • /
    • v.30 no.6
    • /
    • pp.713-732
    • /
    • 2008
  • Serviceability and durability of the concrete members can be seriously affected by the corrosion of steel rebar. Carbonation front and or chloride ingress can destroy the passive film on rebar and may set the corrosion (oxidation process). Depending on the level of oxidation (expansive corrosion products/rust) damage to the cover concrete takes place in the form of expansion, cracking and spalling or delamination. This makes the concrete unable to develop forces through bond and also become unprotected against further degradation from corrosion; and thus marks the end of service life for corrosion-affected structures. This paper presents an analytical model that predicts the weight loss of steel rebar and the corresponding time from onset of corrosion for the known corrosion rate and thus can be used for the determination of time to cover cracking in corrosion affected RC member. This model uses fully the thick-walled cylinder approach. The gradual crack propagation in radial directions (from inside) is considered when the circumferential tensile stresses at the inner surface of intact concrete have reached the tensile strength of concrete. The analysis is done separately with and without considering the stiffness of reinforcing steel and rust combine along with the assumption of zero residual strength of cracked concrete. The model accounts for the time required for corrosion products to fill a porous zone before they start inducing expansive pressure on the concrete surrounding the steel rebar. The capability of the model to produce the experimental trends is demonstrated by comparing the model's predictions with the results of experimental data published in the literature. The effect of considering the corroded reinforcing steel bar stiffness is demonstrated. A sensitivity analysis has also been carried out to show the influence of the various parameters. It has been found that material properties and their inter-relations significantly influence weight loss of rebar. Time to cover cracking from onset of corrosion for the same weight loss is influenced by corrosion rate and state of oxidation of corrosion product formed. Time to cover cracking from onset of corrosion is useful in making certain decisions pertaining to inspection, repair, rehabilitation, replacement and demolition of RC member/structure in corrosive environment.

Wear Mechanism of MgO-C Refractory with Thermite Reaction Products of MgO and Al (MgO와 Al의 테르밋 반응생성물이 첨가된 MgO-C계 내화재료의 용손 기구)

  • 최태현;전병세
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.7
    • /
    • pp.832-838
    • /
    • 1996
  • Thermite reaction products of MgO and Al were added to MgO-C refractory to improve the properties of corrosion against the attack of slag, oxidation and mechanical spalling. Corrosion rate of MgO-C-MgAl2O4 spinel refractory at the ratio of 3.3(CaO/SiO2) slag was smaller than that of MgO-C and MgO-C-Al refractory. The excellent corrosion resistance of the MgO-C-MgAl2O4 spinel refractory against the slag attack was appeared by Al and MgAl2O4 spinel with high melting point and corrosion resistance and the high thermal conductivity and low thermal expansion of AIN. Hot M.O.R at 140$0^{\circ}C$ and the resistance of oxidation weight loss at 90$0^{\circ}C$ were 210kg/cm2 and -12% respectively.

  • PDF

A Study on Desalization and Corrosion Products Formed on Salinized Archaeological Iron Artifacts (침염시킨 철기 유물 표면 위에 형성된 부식 생성물과 탈염처리에 대한 연구)

  • Min, Sim-Kun;Lee, Jae-Hyung;Lee, Jae-Bong;An, Byeong-Chan
    • Journal of the Korean institute of surface engineering
    • /
    • v.40 no.1
    • /
    • pp.44-56
    • /
    • 2007
  • Excavated archaeological iron artifacts are usually conducted the conservation treatment for removal of chloride ions in the corrosion products. However, some iron artifacts are corroded again even after the conservation treatment due to unremoved chloride ions. Therefore, it is important to prevent desalinized artifacts from the occurrence of corrosion after the treatment. In this paper, we investigated the characteristics of corrosion products on salinized iron artifacts and evaluated the variety of desalination methods such as autoclave, intensive washing and NaOH. It was also found that ${\beta}-FeOOH$ (Akaganeite) played an important role on the occurrence of corrosion and the treatment for removal of chloride ions. The extents of desalination were compared between the desalination methods. Results showed that the autoclave method represented the highest efficiency for desalination while the intensive washing method was the lowest.