• Title/Summary/Keyword: Corrosion prediction

Search Result 267, Processing Time 0.036 seconds

Design Considerations to Enhance Perforation Corrosion and Life Prediction of Automotive Body Panel

  • Choi, Minsoo;Chung, Bumgoo;Choi, Jaewoong
    • Corrosion Science and Technology
    • /
    • v.2 no.5
    • /
    • pp.247-251
    • /
    • 2003
  • The corrosion forms of automotive body panels are various. One of the representations is a corrosion pitting and its propagation on the lapped portion by galvanic corrosion. But it has been difficult in correlation analysis about the corrosion propagation rate and mechanism of pitting and the actual automotive body in field. This present study interprets experimentally the rust pitting occurrence mechanism on the lapped panels through experimental methods. And field car investigation was executed for correlation analysis with experimental results. This paper compares corrosion propagation rate by pitting on hot-dip galvannealed steel sheets with corrosion forms in the automotive field condition. The research fundamentals which make it possible to predict the pitting occurrence and propagation on the lapped panels in the actual vehicles are given.

Corrosion Induced Long Term Crack Width Prediction for Structural Concrete Members (철근콘크리트 부재에서 철근 부식을 고려한 장기 균열폭 예측)

  • Lee, Gi-Yeol;Yang, Jun-Ho;Chung, Won-Yong;Rho, Sam-Young;Kim, Dae-Joong;Kim, Woo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.199-200
    • /
    • 2009
  • This research developed a long-term crack width prediction model based on bond characteristics that considered steel corrosion, concrete shrinkage and creep in cracking stabilized structural concrete members.

  • PDF

The Study on the Acceleration Factor of Coastal Outdoor Corrosion test, Salt Spray Test and Accelerated Corrosion Test using 0.5wt% carbon steel (0.5wt% 탄소강을 이용한 해안 야외부식시험과 염수분무시험, 가속부식시험의 가속계수에 대한 연구)

  • Cho, E.Y.;Gwon, G.B.;Cho, D.H.;Kim, J.Y.
    • Corrosion Science and Technology
    • /
    • v.12 no.5
    • /
    • pp.209-214
    • /
    • 2013
  • In the industry, accelerated corrosion test is used for the life time prediction. When anti-corrosion test proceeds in real environments, it is difficult that we predict and evaluate the corrosion life time because of the long test time such as 10 years or more time. Accelerated corrosion test and Salt spray test are able to test corrosion life time of products in the laboratory instead of outdoor corrosion test. Experimental procedure is selected for the corrosion standard specimen, exposure of the specimens, measurements of the mass loss and evaluating the mass loss data. As a result, the acceleration factor of the accelerated corrosion test to the outdoor corrosion test is 414.8. Therefore we can predict the corrosion life time of carbon steel during a short time period.

Nuclear Corrosion: Achievements and Challenges

  • Feron, Damien
    • Corrosion Science and Technology
    • /
    • v.15 no.3
    • /
    • pp.113-119
    • /
    • 2016
  • Corrosion science faces new challenges in various nuclear environments. Three main areas may be identified where increases of knowledge and understanding have been done and are still needed to face the technical needs: (i) the extension of the service time of nuclear power plants from 40 years, as initially planned, to 60 years and probably more as expected now, (ii) the prediction of long term behaviour of metallic materials in nuclear waste disposal where the corrosion processes have to be predicted over large periods of time, some thousands years and more, (iii) the choice of materials for use at very high temperatures as expected in Generation IV power plants in environments like gas (helium), supercritical water, liquid metals or salts. Service time extension, deep geological waste repositories and high temperature reactors sustain researches and developments to model corrosion phenomena at various scales, from atoms to components.

Corrosion of Reinforcement and Its Effect on Structural Performance in Marine Concrete Structures

  • Yokota, Hiroshi;Kato, Ema;Iwanami, Mitsuyasu
    • Corrosion Science and Technology
    • /
    • v.6 no.6
    • /
    • pp.297-303
    • /
    • 2007
  • This paper discusses the chloride-induced corrosion of reinforcement in marine concrete structures focusing on the variability in the progress of deterioration. Through tests and analyses of reinforced concrete slabs taken out from existing open-pile structures that have been in service for 30 to 40 years, the following topics were particularly discussed: variation in chloride ion profiles of concrete, variation in corrosion properties of reinforcement embedded in concrete, and influence of the reinforcement corrosion on the load-carrying capacity of the concrete slabs. As a result, their variability was found to be very large even in one reinforced concrete slab with almost the same conditions. It was also discussed how to determine the calculation parameters for prediction of decreasing in load-carrying capacity of concrete members with chloride-induced corrosion of reinforcement.

A Study on the anti-Corrosion Properties of Inhibitor in Aqueous Solution (수용액내에서의 방청제 부식성능 평가연구)

  • Ryu, Hwa-Sung;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2011.11a
    • /
    • pp.221-223
    • /
    • 2011
  • In this study, in order to comprehend performance of corrosion inhibitor, the experiment study was conducted about corrosion characteristic of 3 steps(0.0, norm 1/2, norm) compared to organic corrosion inhibitor standard use of liquid and molar 3 steps(0.0, 0.3, 0.6%) of Chloride by added amount of inorganic corrosion inhibitor by the corrosion inhibitor types about 2.4kg/㎥, 4.8kg/㎥ based on Chloride ion content 1.2kg/㎥ for service life prediction of concrete structure by using Poteniostat.

  • PDF

Film Formation in $CO_2$ Corrosion with the Presence of Acetic: An Initial Study

  • Ismail, Mokhtar Che;Mohd, Muhammad Azmi;Turgoose, Stephen
    • Corrosion Science and Technology
    • /
    • v.7 no.1
    • /
    • pp.22-26
    • /
    • 2008
  • Formation of protective iron carbonate films in $CO_2$ corrosion can reduce corrosion rate substantially and the effects have been incorporated in various prediction models. The $CO_2$ corrosion with the presence of free acetic acid is known to increase corrosion rate below scaling temperature. The possible interaction between the formation of iron acetate and iron carbonate films can affect the protectiveness of the film. The study is done using 3% NaCl solution under stagnant $CO_2$ -saturated condition at the scaling temperatures at various pH values and HAC concentrations. The result show that the presence of HAc does not affect the formation of protective iron carbonate film but delays the attainment of protective iron carbonate due to a possibility of solubilising of ferrous ions and thinning of the films.

Evaluation of the Corrosion Behavior of the Aluminum Cladding in the KMRR Fuel (KMRR 핵연료 알루미늄 피복재의 부식 거동 평가)

  • Lee, Chan-Bock;Sohn, Dong-Seong
    • Nuclear Engineering and Technology
    • /
    • v.26 no.4
    • /
    • pp.526-535
    • /
    • 1994
  • For the evaluation of the corrosion behavior of the aluminum cladding in the KMRR(Korea Multipurpose Research Reactor) fuel, a modified Griess correlation was derived by introducing a heat flux factor derived from the comparison of the measured in-reactor corrosion data with the prediction of the Griess correlation. As a design criterion on the corrosion to maintain the KMRR fuel integrity, prevention of the oxide spallation was conservatively selected, which is conservatively assumed to occur when the temperature difference across the oxide layer exceeds 114$^{\circ}C$. A bounding power history of the KMRR fuel was determined by examining all the power histories of the KMRR fuel from cycle 1 to equilibrium cycle, and used to predict the maximum possible corrosion. Results of the corrosion prediction of the KMRR fuel with the bounding power history showed that the maximum local thickness of the oxide layer would be below 50$\mu$m and the design criterion on the oxide spallation would be satisfied with a factor of two margin. Therefore, it can be said that corrosion of the cladding will not impair the integrity of the KMRR fuel. Nevertheless, the applicability of the modified Griess correlation to the KMRR needs to be further verified through the KMRR fuel corrosion surveillance.

  • PDF

Numerical model for local corrosion of steel reinforcement in reinforced concrete structure

  • Chen, Xuandong;Zhang, Qing;Chen, Ping;Liang, Qiuqun
    • Computers and Concrete
    • /
    • v.27 no.4
    • /
    • pp.385-393
    • /
    • 2021
  • Reinforcement corrosion is the main cause of the durability failure of reinforced concrete (RC) structure. In this paper, a three-dimensional (3D) numerical model of macro-cell corrosion is established to reveal the corrosion mechanisms of steel reinforcement in RC structure. Modified Direct Iteration Method (MDIM) is employed to solve the system of partial differential equations for reinforcement corrosion. Through the sensitivity analysis of electrochemical parameters, it is found that the average corrosion current density is more sensitive to the change of cathodic Tafel slope and anodic equilibrium potential, compared with the other electrochemical parameters. Furthermore, both the anode-to-cathode (A/C) ratio and the anodic length have significant influences on the average corrosion current density, especially when A/C ratio is less than 0.5 and anodic length is less than 35 mm. More importantly, it is demonstrated that the corrosion rate of semi-circumferential corrosion is much larger than that of circumferential corrosion for the same A/C ratio value. The simulation results can give a unique insight into understanding the detailed electrochemical corrosion processes of steel reinforcement in RC structure for application in service life prediction of RC structures in actual civil engineer.

The Development of GIS Interconnected Corrosion Prediction System for Underground Buried Gas Pipelines (GIS연계형 지중매설 가스배관의 부식 예측시스템 개발)

  • Bae Jeong-Hyo;Kim Dae-Kyeong;Kim Ki-Joon
    • Journal of the Korean Institute of Gas
    • /
    • v.4 no.3 s.11
    • /
    • pp.39-45
    • /
    • 2000
  • In general, most of the GIS only deal with materials and geometric data which just include position, radius, length of the structure. Therefore it's hard to get corrosion data from it. But the one that an owner of metallic structures want to know is the integrity of the structure. Cathodic Protection System can not protect corrosion on the underground facilities perfectly but protect corrsion effectively. It therefore is necessary to monitor the facilities continually So, we need the development of GIS interconnected a corrosion prediction system on the view point of the efficiency of operation and the protection for a big accident. The results of the development of its system are described in this paper. It can do life prediction and interference analysis and also newest corrosion data should be updated regularly.

  • PDF