• Title/Summary/Keyword: Corrosion modelling

Search Result 46, Processing Time 0.024 seconds

A vibration based acoustic wave propagation technique for assessment of crack and corrosion induced damage in concrete structures

  • Kundu, Rahul Dev;Sasmal, Saptarshi
    • Structural Engineering and Mechanics
    • /
    • v.78 no.5
    • /
    • pp.599-610
    • /
    • 2021
  • Early detection of small concrete crack or reinforcement corrosion is necessary for Structural Health Monitoring (SHM). Global vibration based methods are advantageous over local methods because of simple equipment installation and cost efficiency. Among vibration based techniques, FRF based methods are preferred over modal based methods. In this study, a new coupled method using frequency response function (FRF) and proper orthogonal modes (POM) is proposed by using the dynamic characteristic of a damaged beam. For the numerical simulation, wave finite element (WFE), coupled with traditional finite element (FE) method is used for effectively incorporating the damage related information and faster computation. As reported in literature, hybrid combination of wave function based wave finite element method and shape function based finite element method can addresses the mid frequency modelling difficulty as it utilises the advantages of both the methods. It also reduces the dynamic matrix dimension. The algorithms are implemented on a three-dimensional reinforced concrete beam. Damage is modelled and studied for two scenarios, i.e., crack in concrete and rebar corrosion. Single and multiple damage locations with different damage length are also considered. The proposed methodology is found to be very sensitive to both single- and multiple- damage while being computationally efficient at the same time. It is observed that the detection of damage due to corrosion is more challenging than that of concrete crack. The similarity index obtained from the damage parameters shows that it can be a very effective indicator for appropriately indicating initiation of damage in concrete structure in the form of spread corrosion or invisible crack.

Chloride diffusion study in different types of concrete using finite element method (FEM)

  • Paul, Sajal K.;Chaudhuri, Subrata;Barai, Sudhirkumar V.
    • Advances in concrete construction
    • /
    • v.2 no.1
    • /
    • pp.39-56
    • /
    • 2014
  • Corrosion in RCC structures is one of the most important factors that affects the structure's durability and subsequently causes reduction of serviceability. The most severe cause of this corrosion is chloride attack. Hence, to prevent this to happen proper understanding of the chloride penetration into concrete structures is necessary. In this study, first the mechanism of this chloride attack is understood and various parameters affecting the process are identified. Then an FEM modelling is carried out for the chloride diffusion process. The effects of fly ash and slag on the diffusion coefficient and chloride penetration depth in various mixes of concretes are also analyzed through integrating Virtual RCPT Lab and FEM.

Performance-based remaining life assessment of reinforced concrete bridge girders

  • Anoop, M.B.;Rao, K. Balaji;Raghuprasad, B.K.
    • Computers and Concrete
    • /
    • v.18 no.1
    • /
    • pp.69-97
    • /
    • 2016
  • Performance-based remaining life assessment of reinforced concrete bridge girders, subject to chloride-induced corrosion of reinforcement, is addressed in this paper. Towards this, a methodology that takes into consideration the human judgmental aspects in expert decision making regarding condition state assessment is proposed. The condition of the bridge girder is specified by the assignment of a condition state from a set of predefined condition states, considering both serviceability- and ultimate- limit states, and, the performance of the bridge girder is described using performability measure. A non-homogeneous Markov chain is used for modelling the stochastic evolution of condition state of the bridge girder with time. The thinking process of the expert in condition state assessment is modelled within a probabilistic framework using Brunswikian theory and probabilistic mental models. The remaining life is determined as the time over which the performance of the girder is above the required performance level. The usefulness of the methodology is illustrated through the remaining life assessment of a reinforced concrete T-beam bridge girder.

Ab-initio DFT Modeling of Alkanethiols as Carbon Steel Corrosion Inhibitors (탄소강 부식 억제제로서 알칸 티올의 Ab-initio DFT 모델링)

  • Lgaz, Hassane;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.05a
    • /
    • pp.91-92
    • /
    • 2021
  • In the present work, we simulated and explained the bonding of three alkanethiols - hexanethiol (HT), decanethiol (DT), and 11-mercaptoundecanoic acid (MDA) - with Fe(110) surface and Fe2 clusters using Density Functional Theory (DFT) to probe the corrosion inhibition mechanisms. The interaction energies computed from periodic DFT calculations successfully predicted the experimental inhibition performance. We have found strong covalent bond formation between S(thiol) and Fe-atoms in both approaches, further confirmed by the projected density of states and electron density difference. Besides, natural bond orbital (NBO) charge distribution showed that DT had stronger electron-donation and back-donation synergic interactions with Fe-atoms.

  • PDF

Analysis for Steel Corrosion-Induced Damage in Cross-Section of Reinforced Concrete (철근부식에 의한 철근 콘크리트 단면의 손상 해석)

  • Jung-Suk Kim;Ki Yong Ann
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.1
    • /
    • pp.79-88
    • /
    • 2023
  • In this study, a development of the rust formation arising from steel corrosion was modelled to quantify the structural impact in steel reinforced concrete. The interfacial gap, cover depth and diameter of steel rebar were taken for variables in modelling. It was found that the interfacial gap was the most influencing on the structural limit at steel corrosion, followed by steel diameter and cover depth. At 75 mm of cover depth with 20 mm of the steel diameter, the rust amount to reach cracking accounted for 16.95-27.69 ㎛ to 1-10 ㎛ of the interfacial gap. It was found that there was no risk of cracking and structural limit until the rust was formed within the interfacial gap. With a further formation of rust, the concrete section was successively behaved to yielding, cracking and failure. Additionally, the interfacial gap was the most dominant parameter for the rust amount to reach the cracking of concrete at the interfacial zone, whilst the cover depth had a marginal effect on cracking but had a crucial influence on the rust to failure.

Evaluation of Cross-Sectional Damage for RC Column Subjected to Axial Loading and Steel Corrosion (철근 부식과 축방향 하중을 받는 철근-콘크리트 기둥 단면의 손상 평가)

  • Changyoung Kim;Ki Yong Ann
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.4
    • /
    • pp.476-483
    • /
    • 2023
  • The present study concerns modelling the structural behaviour for concrete structure into the crack initiation at corrosion of steels. The degradation source included the axial load and steel corrosion. A development of the rust formed on the steel surface was considered with the interfacial gap between steel and concrete. As a result, the tensile damage could occur on the surface of concrete into the cracking with no steel corrosion, which could be further developed by the increasing rust formation, while the cracking at the steel-concrete interface was mainly attributed to the compressive deformation, being restricted within the interfacial zone.

A Study on Monte Carlo Simulation by beam scattering in Resin of New Austria Tunnel Method for Safety of Industrial Disaster (산업재해 방지를 위한 New Austria Tunnel Method 수지에서 빔산란에 의한 Monte Carlo 시뮬레이션에 관한 연구)

  • Nam, Sang-Sung;Lee, Joo-Youb
    • Journal of the Korean Applied Science and Technology
    • /
    • v.30 no.3
    • /
    • pp.444-450
    • /
    • 2013
  • The influences of scatterer and absorber in turbid material by light scattering on silica fume of additive were interpreted for the scattered intensity and wavelength. The molecular properties have been studied by Monte Carlo simulation in resin of New Austria Tunnel Method. It has been found that the effects of optical properties in scattering media could be investigated by the optical parameters(${\mu}_s$, ${\mu}_a$,${\mu}_t$). Monte Carlo Simulation method for modelling of light transport in the civil engineering and construction field was applied. The results using a phantom were discussed that the distance from source to detector is closer, and scattering intensity is stronger with those obtained through Monte Carlo Simulation. It may also aid in designing the best model for coatings and corrosion for the durability of metal constructions.

Application of Fractal Geometry to Interfacial Electrochemistry - I. Diffusion Kinetics at Fractal Electrodes

  • Shin Heon-Cheol;Pyun Su-Il
    • Journal of the Korean Electrochemical Society
    • /
    • v.4 no.1
    • /
    • pp.21-25
    • /
    • 2001
  • This article is concerned with the application of the fractal geometry to interfacial electrochemistry. Especially, we dealt with diffusion kinetics at the fractal electrodes. This article first explained the basic concepts of the Sacral geometry which has proven to be fruitful for modelling rough and irregular surfaces. Finally this article examined the electrochemical responses to various signals under diffusion-limited reactions during diffusion towards the fractal interfaces: The generalised forms, including the fractal dimension of the electrode surfaces, of Cottrell, Sand and Randles-Sevcik equations were theoretically derived and explained in chronoamperomety, chronopotentiometry and linear sweep/cyclic voltammetry, respectively.

Prediction of Welding Residual Stress of Dissimilar Metal Weld of Nozzle using Finite Element Analyses (유한요소해석을 이용한 노즐 이종금속용접부의 용접잔류응력 예측)

  • Huh, Nam-Su;Kim, Jong-Wook;Choi, Suhn;Kim, Tae-Wan
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.83-84
    • /
    • 2008
  • The primary water stress corrosion cracking (PWSCC) of dissimilar metal weld based on Alloy 82/182 is one of major issues in material degradation of nuclear components. It is well known that the crack initiation and growth due to PWSCC is influenced by material's susceptibility to PWSCC and distribution of welding residual stress. Therefore, modeling the welding residual stress is of interest in understanding crack formation and growth in dissimilar metal weld. Currently in Korea, a numerical round robin study is undertaken to provide guidance on the welding residual stress analysis of dissimilar metal weld. As a part of this effort, the present paper investigates distribution of welding resisual stress of a ferritic low alloy steel nozzle with dissimilar metal weld using Alloy 82/182. Two-dimensional thermo-mechanical finite element analyses are carried out to simulate multi-pass welding process on the basis of the detailed design and fabrication data. The present results are compared with those from other participants, and more works incorporating physical measurements are going to be performed to quantify the uncertainties relating to modelling assumptions.

  • PDF

Computer-aided approach of parameters influencing concrete service life and field validation

  • Papadakis, V.G.;Efstathiou, M.P.;Apostolopoulos, C.A.
    • Computers and Concrete
    • /
    • v.4 no.1
    • /
    • pp.1-18
    • /
    • 2007
  • Over the past decades, an enormous amount of effort has been expended in laboratory and field studies on concrete durability estimation. The results of this research are still either widely scattered in the journal literature or mentioned briefly in the standard textbooks. Moreover, the theoretical approaches of deterioration mechanisms with a predictive character are limited to some complicated mathematical models not widespread in practice. A significant step forward could be the development of appropriate software for computer-based estimation of concrete service life, including reliable mathematical models and adequate experimental data. In the present work, the basis for the development of a computer estimation of the concrete service life is presented. After the definition of concrete mix design and structure characteristics, as well as the consideration regarding the environmental conditions where the structure will be found, the concrete service life can be reliably predicted using fundamental mathematical models that simulate the deterioration mechanisms. The prediction is focused on the basic deterioration phenomena of reinforced concrete, such as carbonation and chloride penetration, that initiate the reinforcing bars corrosion. Aspects on concrete strength and the production cost are also considered. Field observations and data collection from existing structures are compared with predictions of service life using the above model. A first attempt to develop a database of service lives of different types of reinforced concrete structure exposed to varying environments is finally included.