• Title/Summary/Keyword: Corrosion in chloride environment

Search Result 204, Processing Time 0.024 seconds

Stress Corrosion Cracking of Heat Exchanger Tubes in District Heating System

  • Cho, Sangwon;Kim, Seon-Hong;Kim, Woo-Cheol;Kim, Jung-Gu
    • Corrosion Science and Technology
    • /
    • v.18 no.2
    • /
    • pp.49-54
    • /
    • 2019
  • The purpose of this paper is to present failure analysis, of the heat exchanger tube in a district heating system. SS304 stainless steel is used, as material for the heat exchanger tube. The heat exchanger operates in a soft water environment containing a small amount of chloride ions, and regularly repeats operation and standstill period. This causes concentration of chloride ions on the outer surface of the tube, as well as repeat of thermal expansion, and shrinkage of the tube. As a result of microscopic examination, cracks showed transgranular as well as branched propagation, and many pits were present, at the initiation point of each crack. Energy disperstive spectroscopy analysis showed Fe and O peak, as well as Cl peak, meaning that cracks were affected by Cl ion. Failure of the tube was caused by chloride-induced stress corrosion cracking by thermal stress, high temperature, and localized enrichment of chloride ions.

Effect of Corrosion Inhibitor for Reinforcing Steel in Concrete Containing Chlorides (염화물을 함유한 콘크리트 중의 철근방식을 위한 방청제의 효과)

  • 문한영;김성수
    • Magazine of the Korea Concrete Institute
    • /
    • v.10 no.6
    • /
    • pp.325-333
    • /
    • 1998
  • Under the seawater environment, the reinforced concrete structure is deteriorated due to physical and chemical attacks. The main deterioration mechanism is the chloride corrosion of reinforcing steel. The corrosion inhibitors have been used to protect the rebars from corrosion which are susceptible to chlorides in concrete. However, there is not clear conclusion about corrosion inhibitors yet. In this study, it is made the accelerated experiment with 3 kinds of corrosion inhibitors for various chloride ingresses. It is estimated corrosion inhibitors that inhibitors by Half-Cell Potential, corrosion area ratio and weight loss ratio. It is concluded that inhibitors are not effective to corrosion inhibition for excessive chloride ingress. However, the effect of inhibition is directly proportional ot contents of corrosion inhibitors in some chloride ingress.

A study on the Application Effect of Friction Stir Processing for Enhanced Pitting Corrosion Resistance of Stainless Steel Welds in Chloride Environment (염화물 환경에서 스테인리스강 용접부의 공식저항성 향상을 위한 마찰교반공정 적용효과에 관한 연구)

  • Jong Moon Ha;Deog Nam Shim;Seung Hyun Kim
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.19 no.2
    • /
    • pp.84-92
    • /
    • 2023
  • As temporary storage facilities for spent nuclear fuels in domestic nuclear power plants are expected to be saturated, external intermediate storage facilities would be required in the future. Spent nuclear fuels are stored in metal canisters and then placed in a dry environment within concrete or metal casing for operation. In the United States, the dry storage method for spent nuclear fuels has been operated for an extended period. Based on the corrosion experiences of dry storage canisters in chloride environments, numerous studies have been conducted to reduce corrosion in welds. With the construction of intermediate storage facilities in Korea for spent nuclear fuels expected near coastal areas adjacent to nuclear power plants, there is a need for research on the corrosion occurrence of welds and mitigation methods for canisters in chloride environments. In this paper, we measured and compared the residual stresses in the Heat-Affected Zones (HAZ) after electron beam welding (EBW) and gas tungsten arc welding (GTAW) processes for candidate materials such as 304L, 316L, and duplex stainless steel(DSS). We investigated the possibility of microstructure control through the application of surface modification processes using friction stir processing (FSP). Corrosion tests on each welded specimen revealed a higher corrosion rate in EBW welds compared to GTAW. Furthermore, it was confirmed that corrosion resistance improved due to phase refinement and redistribution of precipitates when FSP was applied.

Evaluation of Steel Corrosion of Slag Concrete by Half-cell Potential Method (반전지-전위 측정방법을 활용한 슬래그 콘크리트의 철근 부식 저항성능 평가)

  • Lee, Bo-Kyeong;Kim, Gyu-Yong;Kim, Rae-Hwan;Yoon, Min-Ho;Lee, Young-Wook;Choe, Gyeong-Cheol
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.11a
    • /
    • pp.3-4
    • /
    • 2014
  • There is high probability of steel corrosion on the reinforced concrete exposed to marine environment by penetration of chloride ion. When making concrete structure with slag as admixture in marine environment, salt damage can be prevented. Therefore, this paper presents experimental results of steel corrosion resistance of slag concrete considering marine environment through half-cell potential method which is one of the nondestructive test. As a result of half-cell potential experiment, it was assumed that every specimen exposed to marine environment was not corroded, and as a result of destroying specimens, it was confirmed that there was no corrosion in specimens.

  • PDF

Assessment of some parameters of corrosion initiation prediction of reinforced concrete in marine environments

  • Moodi, Faramarz;Ramezanianpour, Aliakbar;Jahangiri, Ehsan
    • Computers and Concrete
    • /
    • v.13 no.1
    • /
    • pp.71-82
    • /
    • 2014
  • Chloride ion ingress is one of the major problems that affect the durability of concrete structures such as bridge decks, concrete pavements, and other structures exposed to harsh saline environments. Therefore, durability based design of concrete structures in severe condition has gained great significance in recent decades and various mathematical models for estimating the service life of rein-forced concrete have been proposed. In spite of comprehensive researches on the corrosion of rein-forced concrete, there are still various controversial concepts in quantitation of durability parameters such as chloride diffusion coefficient and surface chloride content. Effect of environment conditions on the durability of concrete structures is one of the most important issues. Hence, regional investigations are necessary for durability based design and evaluation of the models. Persian Gulf is one of the most aggressive regions of the world because of elevated temperature and humidity as well as high content of chloride ions in seawater. The aim of this study is evaluation of some parameters of durability of RC structures in marine environment from viewpoint of corrosion initiation. For this purpose, some experiments were carried out on the real RC structures and in laboratory. The result showed that various uncertainties in parameters of durability were existed.

A Study on the Estimation of Steel Corrosion in Concrete Exposed under the Environment of Seawater (해양환경하에 방치한 콘크리트중의 철근의 부식 추정에 대한 연구)

  • 문한영;김성수;류재석
    • Magazine of the Korea Concrete Institute
    • /
    • v.6 no.2
    • /
    • pp.129-137
    • /
    • 1994
  • This study was performed for the purpose of obtaining the fundamental data to establish the criterion of concrete deterioration and presuming steel corrosion of concrete structures under the environment of seawater. Steel embedded concrete specimens were exposed in seawater for 1year. The soluble chloride content in concrete, corrosion potential and steel corrosion were considered. The results show that soluble chloride content in concrete was decreased with lower water-cement ratio and with mineral admixtures. Half-cell potential is reduced with steel corrosion. Corrosion area ratio is correlative with half-cell potential.

Rapid Corrosion Test on Marine Reinforcing Steel (부식촉진에 의한 해양.항만 철근 콘크리트 구조물의 철근 방식에 관한 실험적 연구)

  • 정근성;문홍식;송호진;이상국;정영수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.537-542
    • /
    • 2001
  • Recently long-span bridges, such as Kwang-Ahn Grand bridge, Seo-Hae Grand Bridge, Young-Jong Grand Bridge, etc, have been designed and constructed near the shore. It needs to maintain the durability of marine concrete structures which are exposed to severe chloride environments. It is well known that corrosion of reinforcement steels in concrete structure is the most important cause for the durability of concrete structure which can be controlled by systematic preparatory corrosion protection works for economic and safe infrastructures. Various corrosion protection systems have been used for the corrosion protection of reinforcement steels from detrimental chemical components such as chloride, sulphate and etc. Since chloride can be penetrated into concrete in a variety way, an effective method has to be adopted by taking into full economical aspects and technical data of each protection system. The objective of this experimental study is to investigate the corrosion behavior of reinforcing steel in laboratory concrete specimens which are exposed to cyclic wet and dry saltwater, and then to develop pertinent corrosion protection system, such as corrosion inhibitors and cathodic protection for reinforced concrete bridges exposed to chloride environment. Resistance of various corrosion inhibitors and impressed current system have been experimentally evaluated under severe environmental conditions, and thus effective corrosion protection systems could have been Practically developed for future concrete construction.

  • PDF

Fuzzy methodology application for modeling uncertainties in chloride ingress models of RC building structure

  • Do, Jeongyun;Song, Hun;So, Seungyoung;Soh, Yangseob
    • Computers and Concrete
    • /
    • v.2 no.4
    • /
    • pp.325-343
    • /
    • 2005
  • Chloride ingress is a common cause of deterioration of reinforced concrete located in coastal zone. Modeling the chloride ingress is an important basis for designing reinforced concrete structures and for assessing the reliability of an existing structure. The modeling is also needed for predicting the deterioration of a reinforced structure. The existing deterministic solution for prediction model of corrosion initiation cannot reflect uncertainties which input variables have. This paper presents an approach to the fuzzy arithmetic based modeling of the chloride-induced corrosion of reinforcement in concrete structures that takes into account the uncertainties in the physical models of chloride penetration into concrete and corrosion of steel reinforcement, as well as the uncertainties in the governing parameters, including concrete diffusivity, concrete cover depth, surface chloride concentration and critical chloride level for corrosion initiation. There are a lot of prediction model for predicting the time of reinforcement corrosion of structures exposed to chloride-induced corrosion environment. In this work, RILEM model formula and Crank's solution of Fick's second law of diffusion is used. The parameters of the models are regarded as fuzzy numbers with proper membership function adapted to statistical data of the governing parameters instead of random variables of probabilistic modeling of Monte Carlo Simulation and the fuzziness of the time to corrosion initiation is determined by the fuzzy arithmetic of interval arithmetic and extension principle. An analysis is implemented by comparing deterministic calculation with fuzzy arithmetic for above two prediction models.

Comparison of Diffusion Characteristic of Chloride According to the Condition of Hardened Concrete (경화된 콘크리트의 상태에 따른 염화물 확산특성 비교)

  • Leem Young-Moon;Yang Eun-Ik;Min Seok-Hong
    • Journal of the Korean Society of Safety
    • /
    • v.19 no.3 s.67
    • /
    • pp.89-94
    • /
    • 2004
  • Most reinforcements in concrete are constructed by steel. Corrosion of reinforcement is the main cause of damage and early failure of reinforced concrete structures. The corrosion is mainly professed by the chloride ingress. In general, chloride in concrete can be discriminated by two components, total chloride and fire chloride. This paper provides a testing method on the coefficient of chloride diffusion in concrete and the relationship between total chloride and free chloride in concrete for the composition of predicting model on diffusion rate of chloride. In order to complete this predicting model, this study will use chloride penetration characteristic, diffusion coefficient and experiment of color change on silver nitrate solution. This predicting model is going to help that grasp special quality on salt content inclusion of concrete structure that is exposed in chloride environment. Accurate predicting model can be effectively used not only in selecting of repair time but also in preventing from various deteriorations.

Consideration on the Risk of Corrosion Assessment in Reinforced Concrete Structure by Corrosion Potential Criterion (부식전위 기준에 의한 철근콘크리트 구조물의 부식진단의 위험성에 관한 고찰)

  • Jeong, Jin-A
    • Corrosion Science and Technology
    • /
    • v.14 no.3
    • /
    • pp.147-152
    • /
    • 2015
  • Corrosion of steel reinforcement is a major factor in the deterioration of harbour and bridge structure. Steel corrosion in concrete must be checked for assessing the condition of a reinforced concrete structure. There are several ways how to measure the corrosion condition of reinforced concrete, but the corrosion potential measurement is a very simple, rapid, cost-effective and non-destructive technique to evaluate the severity of corrosion in reinforced concrete structure, therefore commonly used by engineers. However some particular situations may not relate to the reinforcement corrosion probability and a simple comparison of the corrosion potential data with the ASTM C876 Standard on steel reinforcement corrosion probability could be meaningless and not give reliable informations because of environment factors as oxygen concentration, chloride content, concrete resistance. Therefore this paper explains the risk of corrosion assessment in reinforced concrete structure and how many factors can affect the reliability of the corrosion potential data.