• 제목/요약/키워드: Corrosion effect

검색결과 1,756건 처리시간 0.025초

Magnesium Thin Films Possessing New Corrosion Resistance by RF Magnetron Sputtering Method

  • Lee, M.H.;Yun, Y.S.;Kim, K.J.;Moon, K.M.;Bae, I.Y.
    • Corrosion Science and Technology
    • /
    • 제3권4호
    • /
    • pp.148-153
    • /
    • 2004
  • Magnesium thin flims were prepared on cold-rolled steel substrates by RF magnetron sputtering technique. The influence of argon gas pressure and substrate bias voltage on their crystal orientation and morphology of the coated films were investigated by scanning electron microscopy (SEM) and X-ray diffraction, respectively. And the effect of crystal orientation and morphology of magnesium films on corrosion behaviors was estimated by measuring anodic polarization curves in deaerated 3%NaCl solution. From the experimental results, all the sputtered magnesium films showed obviously good corrosion resistance to compare with 99.99% magnesium target of the sputter-evaporation metal. Finally it was shown that the Corrosion-resistance of magnesium films can be improved greatly by controlling the crystal orientation and morphology with effective use of the plasma sputtering technique.

철근부식에 의한 콘크리트의 균열발생에 관한 연구 (Effect of Rebar Corrosion on the Onset of Cracks in Cover Concrete)

  • 이한승
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1999년도 학회창립 10주년 기념 1999년도 가을 학술발표회 논문집
    • /
    • pp.771-774
    • /
    • 1999
  • This study was carried out to quantitatively investigate the amount of corrosion at the time of onset of cracks in cover concrete due to rebar corrosion. In this experiments, the accelerated galvanostatic corrosion method was carried out. FEM analyses were also conducted to investigate the expansive behaviors due to rebar corrosion and the mechanical properties of corrosion products. As a result, it was concluded that the corrosion ratio at the time of onset of cracks in cover concrete was 3% by weight. The onset of cracks in cover concrete due to rebar corrosion could be analyzed by the finite element method.

  • PDF

크롬도금의 부식-마멸에 미치는 산성환경의 영향 (The Effect of Acidic Environments on the Corrosion-Wear of Cr Plating)

  • 곽남인;임우조
    • Tribology and Lubricants
    • /
    • 제19권4호
    • /
    • pp.211-216
    • /
    • 2003
  • This paper was studied on the corrosion and corrosion-wear behavior of chromium (Cr) plating in the acidic environments. In the various pH of acidic solutions, the electrochemical polarization test and wear-corrosion test of Cr plating were carried out. And thus potential, corrosion current density and corrosion-wear loss behaviour of Cr plating are investigated.

간척지대에 매설된 대구경 금속관의 외면 부식손상 평가 (Assessment of external corrosion deterioration of large diameter metallic water pipes buried in reclaimed land)

  • 이호민;최태호;김정현;배철호
    • 상하수도학회지
    • /
    • 제34권5호
    • /
    • pp.373-383
    • /
    • 2020
  • The purpose of this study was to evaluate the corrosion damage of large diameter metallic pipes buried in reclaimed land due to the corrosion effect by soil, and to propose a method of installing metal pipes in the reclaimed land. The results are as follow. First, the soil of the reclaimed land was gray clay, the soil specific resistance indicating soil corrosiveness was at least 120 Ω-cm, the pH was weakly acidic(5.04 to 5.60), the redox potential was at least 62 mV, the moisture content was at most 48.8%, and chlorine ions and sulfate ions were up to 4,706.1 mg/kg and 420 mg/kg. Therefore, the overall soil corrosivity score was up to 19, and the external corrosion effect seems to be very large. Second, the condition of straight part of pipes was in good condition, but most of KP joints were affected by corrosion at a severe level. The reason for this seems to be that KP joints accelerated corrosion due to stress and crevice corrosion in addition to galvanic corrosion in the same environment. Third, as a result of evaluating correlations of each item that affects the corrosion on the external part, the lower the soil resistivity and redox potential, the greater the effect on the KP joints corrosion, and the moisture content, chloride ion, and sulfate ion, the higher the value, the greater the effect on the corrosion of KP joints. In addition, among soil corrosion items, the coefficient of determination of soil resistivity with corrosion of KP joints was the highest with 0.6439~0.7672. Fourth, when installing metal pipes or other accessories because the soil of the reclaimed land is highly corrosive, it is necessary to apply a corrosion preventive method to extend the life of pipes and prevent leakage accidents caused by corrosion damage to the joint.

Study of changes in the kinetic parameters of corrosion on the macrocell current induced by the repair of reinforced concrete structures - Results of numerical simulation

  • Mostafa Haghtalab;Vahed Ghiasi;Aliakbar Shirzadi Javid
    • Computers and Concrete
    • /
    • 제32권3호
    • /
    • pp.287-302
    • /
    • 2023
  • Corrosion of reinforcing bars in reinforced concrete structures due to chloride attack in environments containing chloride ions is one of the most important factors in the destruction of concrete structures. According to the abundant reports that the corrosion rate around the repair area has increased due to the macro-cell current known as the incipient anode, it is necessary to understand the effective parameters. The main objective of this paper is to investigate the effect of the kinetic parameters of corrosion including the cathodic Tafel slope, exchange current density, and equilibrium potential in repair materials on the total corrosion rate and maximum corrosion rate in the patch repair system. With the numerical simulation of the patch repair system and concerning the effect of parameters such as electromotive force (substrate concrete activity level), length of repair area, and resistivity of substrate and repair concrete, and with constant other parameters, the sensitivity of the macro-cell current caused by changes in the kinetic parameters of corrosion of the repairing materials has been investigated. The results show that the maximum effect on the macro-cell current values occurred with the change of cathodic Tafel slope, and the effect change of exchange current density and the equilibrium potential is almost the same. In the low repair extant and low resistivity of the repairing materials, with the increase in the electromotive force (degree of substrate concrete activity) of the patch repair system, the sensitivity of the total corrosion current reduces with the reduction in the cathode Tafel slope. The overall corrosion current will be very sensitive to changes in the kinetic parameters of corrosion. The change in the cathodic Tafel slope from 0.16 to 0.12 V/dec and in 300 mV the electromotive force will translate into an increase of 200% of the total corrosion current. While the percentage of this change in currency density and equilibrium potential is 53 and 43 percent, respectively. Moreover, by increasing the electro-motive force, the sensitivity of the total corrosion current decreases or becomes constant. The maximum corrosion does not change significantly based on the modification of the corrosion kinetic parameters and the modification will not affect the maximum corrosion in the repair system. Given that the macro-cell current in addition to the repair geometry is influenced by the sections of reactions of cathodic, anodic, and ohmic drop in repair and base concrete materials, in different parameters depending on the dominance of each section, the sensitivity of the total current and maximum corrosion in each scenario will be different.

Effect of cover cracking on reliability of corroded reinforced concrete structures

  • Chen, Hua-Peng;Nepal, Jaya
    • Computers and Concrete
    • /
    • 제20권5호
    • /
    • pp.511-519
    • /
    • 2017
  • The reliability of reinforced concrete structures is frequently compromised by the deterioration caused by reinforcement corrosion. Evaluating the effect caused by reinforcement corrosion on structural behaviour of corrosion damaged concrete structures is essential for effective and reliable infrastructure management. In lifecycle management of corrosion affected reinforced concrete structures, it is difficult to correctly assess the lifecycle performance due to the uncertainties associated with structural resistance deterioration. This paper presents a stochastic deterioration modelling approach to evaluate the performance deterioration of corroded concrete structures during their service life. The flexural strength deterioration is analytically predicted on the basis of bond strength evolution caused by reinforcement corrosion, which is examined by the experimental and field data available. An assessment criterion is defined to evaluate the flexural strength deterioration for the time-dependent reliability analysis. The results from the worked examples show that the proposed approach is capable of evaluating the structural reliability of corrosion damaged concrete structures.

알루미늄 실린더헤드의 내식성에 미치는 부동액의 영향 (Effect of the Anti-Freeze Coolant on the Corrosion Resistance of Aluminum Cylinder Heads)

  • 김영찬;배도인
    • 한국자동차공학회논문집
    • /
    • 제7권5호
    • /
    • pp.89-95
    • /
    • 1999
  • In this study, the corrosion resistance of the aluminum casting commercial materials used in the automotive engine parts with respect to the anti-freeze coolant environment has been tested by the potentio dynamic method. especially, the effect of borax additive in engine coolant on the corrosion resistance of the aluminum casting materials has been evaluated. It was found that the borax in commercial engine coolant, used to prevent the corrosion in cast iron engine, causes a pit corrosion of aluminum casting materials at high temperature. During the engine endurance test with the coolant containing borax, the aluminum cylinder head was failed by the pitting corrosion near the exhaust port. Conclusively, it was suggested that the use of borax in the anti-freeze coolant be restricted for the automotive with aluminum cylinder head.

  • PDF

철근 콘크리트 시험편의 철근방식에 관한 측정법 (Corrosion Measurements on Reinforcing Rebars in Reinforced Concrete Specimen)

  • 이강균;장지원;한기훈;정영수
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1997년도 가을 학술발표회 논문집
    • /
    • pp.281-286
    • /
    • 1997
  • Recent construction activities and maintenance of marine facilities have been accelerating to keep up with rapid economic growth in Korea. Marine concrete structures are exposed to salts an chloride from ocean environments. The corrosion of reinforcement steel caused by chloride-penetration into concrete may severely effect the durability of concrete structures. The objective of this research is to develop a durable concrete by investigating the corrosion resistance of various corrosion protection systems utilizing different water/cement ratio, silica fumes, corrosion inhibitors and etc. A tow-year verification test on various corrosion protection systems has been doing in the laboratory and at the seaside. Corrosion investigations on reinforcement steel are now under progress for more than 180 concrete specimen. Corrosion-related measurements include macrocell corrosion current, instant-off voltage between corroding and noncorroding reinforcement, chloride contents, the corroded surface areas on the reinforcement steel, and etc. A low level of corrosion is investigated on reinforcement steels in concrete specimen made with corrosion inhibitors or applied aqueous impregnating corrosion inhibitors into their surface, even though high chloride contents of concrete specimen.

  • PDF

해양구조물용 RE36강의 용접부 부식거동에 관한 전기화학적 특성 연구 (An Electrochemical Property Stud on the Corrosion Behavior of Welding Part of RE36 Steel for Marine Structure)

  • 김성종;김진경;문경만
    • Journal of Welding and Joining
    • /
    • 제18권5호
    • /
    • pp.70-76
    • /
    • 2000
  • The effect of Post Weld Heat Treatment(PWHT) of RE36 steel for marine structure was investigated with parameters such as micro-vickers hardness, corrosion potential and corrosion current density of weld metal(WM), base metal(BM) and heat affected zone(HAZ), and both Al alloy anode generating current and Al alloy anode weight loss quantity etc. Hardness of post-weld heat treated BM, WM and HAZ is lower than that of As-welded condition of each region. However, hardness of HAZ was the highest among those three parts regardless of PWHT temperature and corrosion potential of WM was the highest among those three parts without regard to temperature and corrosion potential of WM was the highest among those three parts without regard to PWHT temperature. The amplitude of corrosion potential difference of each other three parts at PWHT temperature $550^{\circ}C$, $650^{\circ}C$ are smaller than that of three parts by As-welded condition and corrosion current density obtained by PWHT was also smaller than that of As-welded condition. Eventually, it was known that corrosion resistance was increased by PWHT. However both Al anode generating current and anode weight loss quantity were also decreased by PWHT compare to As-welded condition when RE36 steel is cathodically protected by Al anode. Therefore, it is suggested that the optimum PWHT temperature with increasing corrosion resistance and cathodic protection effect is $550^{\circ}C$.

  • PDF

철부식생성물 저감을 위한 고온 pH(t) 상향 연구 (Study on Increasing High Temperature pH(t) to Reduce Iron Corrosion Products)

  • 신동만;허남용;김왕배
    • Corrosion Science and Technology
    • /
    • 제10권5호
    • /
    • pp.175-179
    • /
    • 2011
  • The transportation and deposition of iron corrosion products are important elements that affect both the steam generator (SG) integrity and secondary system in pressurized water reactor (PWR) nuclear power plants. Most of iron corrosion products are generated on carbon steel materials due to flow accelerated corrosion (FAC). The several parameters like water chemistry, temperature, hydrodynamic, and steel composition affect FAC. It is well established that the at-temperature pH of the deaerated water system has a first order effect on the FAC rate of carbon steels through nuclear industry researches. In order to reduce transportation and deposition of iron corrosion products, increasing pH(t) tests were applied on secondary system of A, B units. Increasing pH(t) successfully reduced flow accelerated corrosion. The effect of increasing pH(t) to inhibit FAC was identified through the experiment and pH(t) evaluation in this paper.