• 제목/요약/키워드: Corrosion current

검색결과 1,115건 처리시간 0.025초

Proposed Guidelines for Selection of Methods for Erosion-corrosion testing in Flowing Liquids

  • Matsumura, Masanobu
    • Corrosion Science and Technology
    • /
    • 제6권6호
    • /
    • pp.291-296
    • /
    • 2007
  • The corrosion of metals and alloys in flowing liquids can be classified into uniform corrosion and localized corrosion which may be categorized as follows. (1) Localized corrosion of the erosion-corrosion type: the protective oxide layer is assumed to be removed from the metal surface by shear stress or turbulence of the fluid flow. A macro-cell may be defined as a situation in which the bare surface is the macro-anode and the other surface covered with the oxide layer is the macro-cathode. (2) Localized corrosion of the differential flow-velocity corrosion type: at a location of lower fluid velocity, a thin and coarse oxide layer with poor protective qualities may be produced because of an insufficient supply of oxygen. A macro-cell may be defined as a situation in which this surface is the macro-anode and the other surface covered with a dense and stable oxide layer is the macro-cathode. (3) Localized corrosion of the active/passive-cell type: on a metal surface a macro-cell may be defined as a situation in which a part of it is in a passivation state and another in an active dissolution state. This situation may arise from differences in temperature as well as in the supply of the dissolved oxygen. Compared to uniform corrosion, localized corrosion tends to involve a higher wall thinning rate (corrosion rate) due to the macro-cell current as well as to the ratio of the surface area of the macro-anode to that of the macro-cathode, which may be rationalized using potential vs. current density diagrams. The three types of localized corrosion described above can be reproduced in a Jet-in-slit test by changing the flow direction of the test liquid and arranging environmental conditions in an appropriate manner.

해양환경 중에서 Cr도금의 부식 특성에 관한 연구 (The Study on the Corrosion Characteristics of Cr Plating in Marine Environment)

  • 임우조;곽남인;윤병두
    • 수산해양기술연구
    • /
    • 제39권3호
    • /
    • pp.211-217
    • /
    • 2003
  • 해양환경의 비저항 변화에 따른 모재, Ni도금 및 Cr도금의 분극저항, 부식전류밀도, 부식억제율 및 분극지배기구에 관하여 연구한 결과 다음과 같은 결론을 얻었다. 1) Cr도금 및 Ni도금의 분극저항은 모재의 분극저항보다 더 높게 나타나고, 이들 재료의 분극저항은 비저항이 감소함에 따라 낮아진다. 2) 비저항이 낮아질수록 Cr도금 및 Ni도금의 부식전류밀도는 모재의 부식전류보다 더 억제됨에 따라 Ni 및 Cr도금의 부식억제율은 더 높게 된다. 3) 해양환경의 비정항에 따른 모재, Ni도금 및 Cr 도금의 부식반응은 음극지배로 판단된다.(이 논문의 결론부분임)

해상용 원심펌프 임펠러의 침식억제법으로 음극방식 및 재료개발에 관한 기초연구 1 (Fundamental Study on Cathodic Protection and Material Development as Erosion-Control Methods of Oceanic Centrifugal Pump(1))

  • 이진열;임우조
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제19권2호
    • /
    • pp.56-66
    • /
    • 1995
  • Recently, with theraped advancement in th oceanology such an ocean-going vessel and oceanic structures, there is a need to study the cavitation erosion-corrosion control of pump impeller, the partial element of ocean machinery, for more effective operation. Especially, the cathodic protection (impressed current method & Al-sacrificial anode method) was applied to sea water, and Cu-alloy material mixed Zn & Al was used as a control method of cavitation erosion-corrosion. In this study, used the piezoelectric vibrator with 20KHz, 24.mu.m to cavity generation apparatus, and investigated the weight loss, weight loss rate, electrode potential & current density etc. under this condition. According to test result, thos describes how to indentify an influence of the cathodic protection and Al & Zn addition in material development for the control of cavitation erosion-corrosion, and those will serve as fundamental data on the cavitation erosion-corrosion control of oceanic centrifugal pump.

  • PDF

3D 유한요소법을 이용한 원전 매설배관 부식결함 탐상기술 개발 (Technology for the Detection of Corrosion Defects in Buried Pipes of Nuclear Power Plants with 3D FEM)

  • 김재원;임부택;박흥배;장현영
    • Corrosion Science and Technology
    • /
    • 제17권6호
    • /
    • pp.292-300
    • /
    • 2018
  • The modeling of 3D finite elements based on CAD data has been used to detect sites of corrosion defects in buried pipes. The results generated sophisticated profiles of electrolytic potential and vectors of current distributions on the earth surface. To identify the location of defects in buried pipes, the current distribution on the earth surface was projected to a plane of incidence that was identical to the pipe locations. The locations of minimum electrolytic potential value were found. The results show adequate match between the locations of real and expected defects based on modeling. In addition, the defect size can be calculated by integrating the current density curve. The results show that the defect sizes were $0.74m^2$ and $0.69m^2$, respectively. This technology may represent a breakthrough in the detection of indirect damage in various cases involving multiple defects in size and shape, complex/cross pipe systems, multiple anodes and stray current.

해양환경 변화가 알루미늄합금 희생양극의 효율에 미치는 영향에 관한 연구 (A Study on the Influence of Al Alloy Sacrificial Anode Efficiency due to Marine Environmental Variation)

  • 김도형
    • 한국해양공학회지
    • /
    • 제14권2호
    • /
    • pp.106-111
    • /
    • 2000
  • Recently it was reported that the life of Al Sacrifical anode is being used in port piers has been significantly shortened compared with the original design life (e.g. average life shortened from 20 years to 13-15 year) Those factors involving these problems mentioned above were seemed to be a quality of anode material and diverse environmental factors such as pH flow rate temperature Dissolved oxygen Chemical oxygen demand and resistivity etcm In this study flow rate and contamination degree(pH) of sea water affecting to sacrificial anode life hve been investigated in terms of electrochemical characteristics of Al alloy sacrificial anode It was known that the lifetime of Al alloy anode was shortened not only by increasing of self-corrosion quantity by varying flow rate of sea water but also by increasing corrosion current density due to the potential difference increment between Al anode and steel structure cathode by varying contamination degree of sea water. Especially when anode current density is from 1mA/cm2 to 3mA/cm2 and flow rate of sea water is under 2m/s anode current efficiency is 90% above However flow rate is over 2m/s anode current efficiency fell down sharply due to erosion corrosion as well as galvanic corrosion.

  • PDF

Methods of Improving Operational Reliability of Oil Well Casing

  • Sergey A. Dolgikh;Irek I. Mukhamatdinov
    • Corrosion Science and Technology
    • /
    • 제23권1호
    • /
    • pp.1-10
    • /
    • 2024
  • Oil well casing leak is caused by contact of casing outer surface with formation electrolyte. It is usually associated with an aquifer with a high salt content or absence of a cement ring behind the casing. The only way to reduce external casing corrosion is through cathodic protection. Through cathodic polarization of casing structure, electron content in crystal lattice and electron density will increase, leading to a potential shift towards the cathodic region. At Tatneft enterprises, cathodic protection is carried out according to cluster and individual schemes. The main criterion for cathodic protection is the size of protective current. For a casing, the protective current is considered sufficient if measurements with a two-contact probe show that the electric current directed to the casing has eliminated all anode sites. To determine the value of required protective current, all methods are considered in this work. In addition, an analysis of all methods used to determine the minimum protective current of the casing is provided. Results show that the method of measuring potential drop along casing is one of the most reliable methods for determining the value of protective current.

용사코팅층의 분극특성 (Polarization Characteristics of Thermal Sprayed Coating Layer)

  • 안석환;김선진;김영식
    • 동력기계공학회지
    • /
    • 제8권4호
    • /
    • pp.38-43
    • /
    • 2004
  • Thermal spraying onto the metal substrate has been widely used as a technique of the surface treatment in the various industrial field. A wide range of thermal spray technologies exist and all rely on the fundamental process of fusing a metal feedstock, atomizing it and transporting it to the surface of a substrate. Specially, these methods have been taken into account as the protection method against the corrosion. In this study, the polarization characteristics were carried out on the thermal sprayed coating layer immersed in various pH of diluted aqueous solutions at $25^{\circ}C$. Aluminum, Zinc, Ni-base alloy, alumina and polyethylene powder were used with sprayed coating materials. From the polarization curves, the electrochemical corrosion potential($E_{corr}$) and the corrosion current density($I_{corr}$) were investigated.

  • PDF

Effect of Zinc Addition in Filler Metal on Sacrificial Anode Cathodic Protection of Fin-Tube Aluminum Heat Exchanger

  • Yoon-Sik So;Eun-Ha Park;Jung-Gu Kim
    • Journal of Electrochemical Science and Technology
    • /
    • 제14권4호
    • /
    • pp.349-360
    • /
    • 2023
  • This study investigated the tri-metallic galvanic coupling of different metals in the tubes, fillers, and fins of a heat exchanger. The goal was to prevent corrosion of the tubes using the fin as a sacrificial anode while ensuring that the filler metal has a more noble potential than the fin, to avoid detachment. The metals were arranged in descending order of corrosion potential, with the noblest potential assigned to the tube, followed by the filler metal and the fin. To address a reduction in protection current of the fin, the filler metal was modified by adding Zn to decrease its corrosion potential. However, increasing the Zn content of filler metal also increases its corrosion current. The study examined three different filler metals, considering their corrosion potential, and kinetics. The results suggest that a filler metal with 1.5 wt.% Zn addition is optimal for providing cathodic protection to the tube while reducing the reaction rate of the sacrificial anode.

산성환경 중에서 구상흑연주철재의 마멸-부식거동에 관한 연구 (The Study on the Wear-Corrosion Behavior of Ductile Cast Iron in the Acidic Environment)

  • 임우조;박동기;윤병두
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2002년도 제35회 춘계학술대회
    • /
    • pp.96-102
    • /
    • 2002
  • This paper was studied on the wear-corrosion behavior of ductile cast iron in the acidic environment. In the dry atmosphere and variety of pH solution, wear-corrosion characteristics and friction coefficient of GCD 60 with various sliding speed and distance were investigated. And electrochemical polarization test of GCD 60 was examined in the environment of various pH value. The main results are as following : In the dry atmosphere, boundary friction appears below nearly 5 $kg_{f}$ of contact load, and it is considered that solid friction occurs over nearly 5 $kg_{f}$ of contact load. As pH value becomes low, wear-corrosion loss in the aqueous solution increases. As the corrosion environment is acidified, corrosion potential of GCD 60 becomes noble, polarization resistance becomes low, and corrosion current density increases.

  • PDF

고주파 열처리한 강인주철재의 마멸부식거동에 관한 연구 (The Study on the Wear Corrosion Behavior of Induction Hardening High Strength Cast Iron in the pH Environments)

  • 박윤식;임우조;박동기
    • 한국가스학회지
    • /
    • 제12권4호
    • /
    • pp.52-57
    • /
    • 2008
  • 본 연구는 pH환경 중에서 고주파 열처리한 강인주철의 마멸 부식거동을 pH환경 중에서의 접촉압력에 따른 마멸부식거동, 침지 부식 후 부식마멸거동 및 전기화학적 부식거동에 대해 고찰하였다. 응축수의 pH가 낮아질수록 마멸부식율은 급격히 증가하고, 전기화학적 양극분극에 의한 강인주철의 부식양상은 중성에서 가늘고 긴 흑연의 편상조직이 나타나지만, 강산성 중에서는 흑연이탈 현상으로 표면이 거칠게 나타난다.

  • PDF