• Title/Summary/Keyword: Corrosion current

Search Result 1,115, Processing Time 0.027 seconds

Evaluation of Tensile Property of Austenitic Alloys Exposed to High-Temperature S-CO2 Environment (고온 S-CO2 환경에 노출된 오스테나이트계 합금의 인장특성 평가)

  • Kim, Hyunmyung;Lee, Ho Jung;Jang, Changheui
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.12
    • /
    • pp.1415-1420
    • /
    • 2014
  • Super-critical $CO_2$ ($S-CO_2$) Brayton cycle has been considered to replace the current steam Rankine cycle in Sodium-cooled Fast Reactor (SFR) in order to improve the inherent safety and thermal efficiency. Several austenitic alloys are considered as the structural materials for high temperature $S-CO_2$ environment.. Microstructural change after long-term exposure to high temperature $S-CO_2$ environment could affect to the mechanical properties. In this study, candidate materials (austenitic stainless steels and Alloy 800HT) were exposed to $S-CO_2$ to assess oxidation resistance and the change in tensile properties. Loss of ductility was observed for some austenitic stainless steels even after 250 h exposure. The contribution of $S-CO_2$ environment on such changes was analyzed based on the characterization of the surface oxide and carburization of the materials in which 316H and 800H showed different oxidation behaviors.

A Study on the Flexural Behavior of Plate Girder Bridge Decks Using a Macro-Element (매크로 요소를 사용한 판형교 바닥판의 휨거동 해석)

  • 최진유;양기재;박남회;강영종
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.13 no.1
    • /
    • pp.13-24
    • /
    • 2000
  • Current specification prescribes that upper and lower reinforcement mat is required in the same amount to resist negative and positive moment in bridge decks. But the negative moment is much smaller than positive moment because the actual behavior of decks consists of local deflection of slab and global deflection of girder. From this study, the analysis method based on harmonic analysis and slope-deflection method was developed and verified by finite element method. The negative moment, obtained from this method, were smaller than those computed based on the KHBDC specifications as much as 40∼50% in the middle of bridge. The amount of reduction of the design negative moment was shown herein to be dependent on variable parameters as shape factor(S/L) of slab, relative stiffness ratio of girder and deck slab, and so on. This investigations indicate that the upper reinforcement mat to resist negative moment can be removed. But further experimental study is required to consider durability and serviceability. From this new design concept, the construction expense can be reduced and the problem of decreasing durability resulting from corrosion of upper reinforcement steel settled.

  • PDF

Simulation of Remote Field Scanner for Defect Evaluation of Water Wall Tube Within the Fluidized Bed Boiler (유동층보일러 수냉벽튜브 결함평가를 위한 원격자장 스캐너 시뮬레이션에 관한 연구)

  • Gil, Doo-Song;Jung, Gye-Jo;Seo, Jung-Seok;Kim, Hak-Joon;Kwon, Chan-Wool
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.6 no.2
    • /
    • pp.145-150
    • /
    • 2020
  • Water wall tube is one of the major factors consisting of a fluidized bed boiler and it plays very important role for the generation of electricity within the boiler. But these water wall tubes within the fluidized bed boiler are subject to the ware and corrosion caused by the high temperature gas and the flowing medium. If water leak is occurred, the secondary damage by the water leak will occur. As a result of that, the power generation efficiency decreases noticeably. Therefore, the maintenance of the water wall tube is very important. In this study, we designed a exciter sensor based on simulation and composed a remote field eddy current system for the defect evaluation of the outer water wall tube. Starting from the shape design of exciter, we conducted simulations for various design factors such as the water wall tube size, material, frequency, lift-off and so on. Based on the results, we designed the optimum exciter sensor for the water wall tube test within the fluidized bed boiler.

Experimental Study of Desalting Methods Using Ethyl Alcohol for Archaeological Cast Iron Objects (에틸알코올 용매를 이용한 주조철제유물의 탈염 실험 연구)

  • Lee, Hye Youn;Cho, Ju Hye
    • Journal of Conservation Science
    • /
    • v.31 no.2
    • /
    • pp.95-104
    • /
    • 2015
  • Excavated archaeological cast iron objects in improper storage are quickly corroded and disintegrated into block and powder finally. Hence desalination treatment which is a way of removing internal corrosive factors, especially chloride ion, is an important process. But desalination is often omitted or objects are dehydrated by alcohol because the destruction of objects could occur during desalting. Although current desalting methods mostly use an aqueous alkali solution, $OH^-$ ions of water could accelerate corrosion and broaden internal cracks cause of high surface tension. Therefore this study experimented desalting using ethyl alcohol, which is low surface tension, to investigate an effect of desalination. As a result, desalting using ethyl alcohol showed the similar or more effective results of desalting using water. In addition, as aspects of desalting safety, ethyl alcohol desalting method was smaller destruction of objects and extraction of Fe from the objects than the aqueous alkali solution. However, this study explored the possibility of desalting methods using organic solvent in fieldwork, so the results would provide basic date for making the safe and effective desalting method for archaeological cast iron objects through further experiments.

Development of Remote Reld Testing Technique for Moisture Separator & Reheater Tubes in Nuclear Power Plants (원자력발전소 습분분리재열기 튜브 원격장검사 기술 개발)

  • Nam, Min-Woo;Lee, Hee-Jong;Kim, Cheol-Gi
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.28 no.4
    • /
    • pp.339-345
    • /
    • 2008
  • The heat exchanger tube in nuclear power plants is mainly fabricated from nonferromagnetic material such as a copper, titanium, and inconel alloy, but the moisture separator & reheater tube in the turbine system is fabricated from ferromagnetic material such as a carbon steel or ferrite stainless steel which has a good mechanical properties in harsh environments of high pressure and temperature. Especially, the moisture separator & reheater tubes, which use steam as a heat transfer media, typically employ a tubing with integral fins to furnish higher heat transfer rates. The ferromagnetic tube typically shows superior properties in high pressure and temperature environments than a nonferromagnetic material, but can make a trouble during the normal operation of power plants because the ferrous tube has service-induced damage forms including a steam cutting, erosion, mechanical wear, stress corrosion cracking, etc. Therefore, nondestructive examination is periodically performed to evaluate the tube integrity. Now, the remote field testing(RFT) technique is one of the solution for examination of ferromagnetic tube because the conventional eddy current technique typically can not be applied to ferromagnetic tube such as a ferrite stainless steel due to the high electrical permeability of ferrous tube. In this study, we have designed RFT probes, calibration standards, artificial flaw specimen, and probe pusher-puller necessary for field application, and have successfully carry out RFT examination of the moisture separator & reheater tube of nuclear power plants.

Microstructures and Hardness of Al-Si Coated 11%Cr Ferritic Stainless Steel, 409L GTA Welds (Al-Si 용융도금된 11%Cr 페라이트 스테인리스강, STS409L GTA 용접부의 미세조직과 경도)

  • Park, Tae-Jun;Kong, Jong-Pan;Na, Hye-Sung;Kang, Chung-Yun;Uhm, Sang-Ho;Kim, Jeong-Kil;Woo, In-Su;Lee, Jong-Sub
    • Journal of Welding and Joining
    • /
    • v.28 no.3
    • /
    • pp.92-98
    • /
    • 2010
  • Ferritic stainless steels, which have relatively small thermal expansion coefficient and excellent corrosion resistance, are increasingly being used in vehicle manufacturing, in order to increase the lifetime of exhaust manifold parts. But, there are limits on use because of the problem related to cosmetic resistance, corrosions of condensation and high temperature salt etc. So, Aluminum-coated stainless steel instead of ferritic stainless steel are utilized in these parts due to the improved properties. In this investigation, Al-8wt% Si alloy coated 409L ferritic stainless steel was used as the base metal during Gas Tungsten Arc(GTA) welding. The effects of coated layer on the microstructure and hardness were investigated. Full penetration was obtained, when the welding current was higher than 90A and the welding speed was lower than 0.52m/min. Grain size was the largest in fusion zone and decreased from near HAZ to base metal. As welding speed increased, grain size of fusion zone decreased, and there was no big change in HAZ. Hardness had a peak value in the fusion zone and decreased from the bond line to the base metal. The highest hardness in the fusion zone resulted from the fine re-precipitation of the coarse TiN and Ti(C, N) existed in the base metal during melting and solidification process and the presence of fine $Al_2O_3$ and $SiO_2$ formed by the migration of the elements, Al and Si, from the melted coating layer into the fusion zone.

Evaluation of Chloride Extraction under Electrochemical Chloride Extraction (전기화학적 염화물 추출법에 따른 염소이온 제거 성능 평가)

  • Jiseok, Kim;Ki-Yong, Ann
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.10 no.4
    • /
    • pp.553-557
    • /
    • 2022
  • The present study evaluate the chloride extracion under electrochemical chloride extraction method. Chloride was penetrated into the concrete from external reservoir using a 4M NaCl solution, and an electrochemical chloride extraction method was applied after the curing period of 1 year. The current density was constantly kept 1000 mA/m2 for coulostatic application with the variation in potential difference. The duration of the ECE treatment was 2, 4, 8 weeks, respectively. The residual chloride concentration at all depths decreased, and the chloride concentration decreased as the application period increased. After the application period of 8 weeks, 62.9 to 77.6 % of chloride extracted in the total chloride profile, and 77.7 to 99.5 % of chloride extracted in the free chloride profile. In particular, the concentration of free chloride at a depth of 7 mm or more from the concrete surface was 0.01 % or less by cement. In addition, it was confirmed that the bound chloride could be extracted by the electrochemical chloride extraction.

Comparison of Catalyst Support Degradation of PEMFC Electrocatalysts Pt/C and PtCo/C (PEMFC 전극촉매 Pt/C와 PtCo/C의 촉매 지지체 열화비교)

  • Sohyeong Oh;Yoohan Han;Minchul Chung;Donggeun Yoo;Kwonpil Park
    • Korean Chemical Engineering Research
    • /
    • v.61 no.3
    • /
    • pp.341-347
    • /
    • 2023
  • In PEMFC, PtCo/C alloy catalysts are widely used because of good performance and durability. However, few studies have been reported on the durability of carbon supports of PtCo/C evaluated at high voltages (1.0~1.5 V). In this study, the durability of PtCo/C catalysts and Pt/C catalysts were compared after applying the accelerated degradation protocol of catalyst support. After repeating the 1.0↔1.5V voltage change cycles, the mass activity, electrochemical surface area (ECSA), electric double layer capacitance (DLC), Pt dissolution and the particle growth were analyzed. After 2,000 cycles of voltage change, the current density per catalyst mass at 0.9V decreased by more than 1.5 times compared to the Pt/C catalyst. This result was because the degradation rate of the carbon support of the PtCo/C catalyst was higher than that of the Pt/C catalyst. The Pt/C catalyst showed more than 1.5 times higher ECSA reduction than the PtCo/C catalyst, but the corrosion of the carbon support of the Pt/C catalyst was small, resulting in a small decrease in I-V performance. In order to improve the high voltage durability of the PtCo/C catalyst, it was shown that improving the durability of the carbon support is essential.

Stress-strain Relations of Concrete Confined with Tubes Having Varying GFRP Layers (수적층 및 필라멘트 와인딩을 이용한 GFRP튜브로 구속된 콘크리트의 압축 거동)

  • Lee, Sung Woo;Choi, Sokhwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.6A
    • /
    • pp.861-872
    • /
    • 2008
  • Concrete-filled glass fiber reinforced polymer tubes are often used for marine structures with the benefit of good durability and high resistance against corrosion under severe chemical environment. Current research presents results of a comprehensive experimental investigation on the behavior of axially loaded circular concrete-filled glass fiber reinforced polymer tubes. This paper is intended to examine several aspects related to the usage of glass fiber fabrics and filament wound layers used for outer shell of piles subjected to axial compression. The objectives of the study are as follows: (1) to evaluate the effectiveness of filament winding angle of glass fiber layers (2) to evaluate the effect of number of GFRP layers on the ultimate load and ductility of confined concrete (3) to evaluate the effect of loading condition of specimens on the effectiveness of confinement and failure characteristics as well, and (4) to propose a analytical model which describes the stress-strain behavior of the confined concrete. Three different types of glass fiber layers were chosen; fabric layer, ${\pm}45^{\circ}$ filament winding layer, and ${\pm}85^{\circ}$ filament winding layer. They were put together or used independently in the fabrication of tubes. Specimens that have various L:D ratios and different diameters have also been tested. Totally 27 GFRP tube specimens to investigate the tension capacity, and 66 concrete-filled GFRP tube specimens for compression test were prepared and tested. The behavior of the specimens in the axial and transverse directions, failure types were investigated. Analytical model and parameters were suggested to describe the stress-strain behavior of concrete under confinement.

Review on the application of single-shell tunnel in Korea (싱글쉘 터널의 국내 적용에 대한 고찰)

  • Sangpil Lee;Heesang Ha;Donghyun Kim
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.26 no.3
    • /
    • pp.223-242
    • /
    • 2024
  • Single-shell tunnels, introduced to South Korea in the early 2000s, have not been adopted for the main tunnels of roads or railways over the past two decades despite several attempts starting with the Gwangju City Bypass. This reluctance likely arises from concerns about the long-term performance of supporting materials and the absence of relevant criteria and specifications. However, recent progress, including the incorporation of high-strength shotcrete standards and corrosion-resistant rock bolt specifications, alongside equipment and technique enhancements, necessitates a reassessment of single-shell tunnels. While the single-shell tunnel method offers advantages in environmental impact, construction cost and period compared to the conventional NATM, it is crucial to address the challenges, such as limited design and construction experience, incomplete detailed standards, and insufficient construction specifications, through further research and pilot projects. This paper reviewed the basic principles of single-shell tunnel, current application and research status, technical development trends, criteria and specifications, and remaining challenges. It aims to reignite discussions on the feasibility of applying single-shell tunnels in South Korea.