• Title/Summary/Keyword: Corrosion Protection System

Search Result 170, Processing Time 0.022 seconds

A Study on Corrosion of Sprinklers System Fire Protection (스프링클러 소방설비의 부식에 관한 연구)

  • Kim, Dong-Jun;Ko, Heung;NamKung, Seung-Tae
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.41-48
    • /
    • 2008
  • We studied on corrosion of sprinklers system fire protection, a cause on corrosion of fire installations and a source of the problem. We investigated the influence of fluid mechanics on the corrosion shape of sprinklers system fire protection installations. And we known a problem of early fire extinguishing in fire protection with corrosion.

  • PDF

Field Testing Center Design of Cathodic Protection System for Maritime Metallic Structures (해양구조물 전기방식시스템 현장적용실험장 설계)

  • Ha, Tae-Hyeon;Bae, Jeong-Hyo;Lee, Hyeon-Gu;Ha, Yun-Cheol;Kim, Dae-Gyeong
    • Proceedings of the KIEE Conference
    • /
    • 2003.11c
    • /
    • pp.633-636
    • /
    • 2003
  • Most of maritime metallic structures are adopted a CP(Cathodic Protection) System for protection of corrosion in advanced country. So, we had been developed a remote corrosion monitoring control system. And we want to know the characteristics of efficiency, reliability, durability and so on. On the view point of it, we have to test in real field. in terms of design, cathodic protection systems, corrosion monitoring systems and optimal corrosion control systems compare to general commercial products. So, these systems have being studied to improve their capability. In this paper, the result of field testing center design of intelligent cathodic protection system including anodes, a real-time wireless remote corrosion monitoring and corrosion control system are described in naval ports.

  • PDF

The effect of cathodic protection system by means of zinc sacrificial anode on pier in Korea

  • Jeong, Jin-A;Jin, Chung-Kuk
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.10
    • /
    • pp.1206-1211
    • /
    • 2014
  • This study has been conducted to confirm the effect of sacrificial anode cathodic protection system for 90 days to protect corrosion on pier that is located in Korea. The cathodically protected structure was a slab and a pile cap. Before the construction of cathodic protection system, the macrography was carried out. As a result of the macrography, many corrosion traces were confirmed in this structure. The trace was mainly focused on joint and zones that concrete cover was eliminated. To apply the cathodic protection system, many onsite techniques have been adopted. In addition, to confirm the inner state of steel in concrete properly, a corrosion monitoring sensor (DMS-100, Conclinic Co. Ltd) has been applied. Test factors were corrosion & cathodic protection potential, 4 hour depolarization potential, resistivity and current density. After 90 days from the installation of cathodic protection system, it could confirm that proper corrosion protection effect was obtained by considering the result of tests.

The Performance of Cathodic Protection with ICCP

  • Oh, Jin-Seok
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.8
    • /
    • pp.1286-1290
    • /
    • 2004
  • This paper describes the anti-corrosion system on underwater structures of ships. Metals and alloys have several positions in the series such as immunity, corrosion and passivity. The iron potential has to change from the corrosion position to the anodic protection or cathodic protection for preventing corrosion by providing corrosion protection system such as ICCP(Impressed Current Cathodic Protection). The purpose of ICCP system is to eliminate the rusting or corrosion, which occurs on metal immersed in water. The system includes a power supply unit, which consists of a transformer, a converter. a controller, etc. This paper presents the protection performance of ICCP under dynamic condition such as velocity. The variation of potential and current density with time and environment factors are also described Finally, the experimental results will be explained and analysed.

Evaluation of Corrosion Protection for Epoxy and Urethane Coating by EIS under Various Cyclic Corrosion Tests

  • Hyun, Jonghun;Shon, Minyoung
    • Corrosion Science and Technology
    • /
    • v.10 no.3
    • /
    • pp.95-100
    • /
    • 2011
  • Protective coatings play an important role in the protection of metallic structures against corrosive environment. The main function of anticorrosive coating is to prevent the materials from corrosive agents, such as water, oxygen and ions. In the study, the corrosion protection properties of urethane and epoxy coating systems were evaluated using EIS methods exposed to the corrosion acceleration test such as Norsok M501, Prohesion and hygrothermal cyclic test. AFM analysis of the coating systems was carried out to monitor the change of roughness of coatings. Urethane coating system was more stable than the epoxy coating under given cyclic conditions. Water uptake into the urethane coatings was less than that into the epoxy coating. The urethane coating system showed better corrosion protection than epoxy coating system based on the changes of the impedance modulus at low frequency region with exposure time. Consequently, the corrosion protection properties of the epoxy and urethane coatings was well correspond with their surface roughness changes and water uptakes.

Rapid Corrosion Test on Marine Reinforcing Steel (부식촉진에 의한 해양.항만 철근 콘크리트 구조물의 철근 방식에 관한 실험적 연구)

  • 정근성;문홍식;송호진;이상국;정영수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.537-542
    • /
    • 2001
  • Recently long-span bridges, such as Kwang-Ahn Grand bridge, Seo-Hae Grand Bridge, Young-Jong Grand Bridge, etc, have been designed and constructed near the shore. It needs to maintain the durability of marine concrete structures which are exposed to severe chloride environments. It is well known that corrosion of reinforcement steels in concrete structure is the most important cause for the durability of concrete structure which can be controlled by systematic preparatory corrosion protection works for economic and safe infrastructures. Various corrosion protection systems have been used for the corrosion protection of reinforcement steels from detrimental chemical components such as chloride, sulphate and etc. Since chloride can be penetrated into concrete in a variety way, an effective method has to be adopted by taking into full economical aspects and technical data of each protection system. The objective of this experimental study is to investigate the corrosion behavior of reinforcing steel in laboratory concrete specimens which are exposed to cyclic wet and dry saltwater, and then to develop pertinent corrosion protection system, such as corrosion inhibitors and cathodic protection for reinforced concrete bridges exposed to chloride environment. Resistance of various corrosion inhibitors and impressed current system have been experimentally evaluated under severe environmental conditions, and thus effective corrosion protection systems could have been Practically developed for future concrete construction.

  • PDF

A Study on Analysis Method of Underwater Electric Field Signature due to Ship's Corrosion and Corrosion Protection System (선체 부식 및 부식 방지장치에 의한 수중 전기장 신호 해석 방안 연구)

  • Chung, Hyun-Ju;Yang, Chang-Seob;Jeon, Jae-Jin
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.11 no.2
    • /
    • pp.43-52
    • /
    • 2008
  • The galvanic corrosion of a vessel, or systems fitted to minimize the ship's corrosion such as ICCP (Impressed Current Cathodic Protection) system and sacrificial anodes, can lead to significant electrical current flow in the sea. The presence of vessel's current sources associated with corrosion will give rise to detectable electric field surrounding the vessel and can put it at risk from mine threats. For this reason, it is necessary to design corrosion protection systems so that they don't only prevent a hull corrosion but also minimize the electric field signature. In this paper, we describe theoretical backgrounds of underwater electric field signature due to corrosion and corrosion protection system on naval vessels and analysis results of the electric field according to the ship's hull and it's propeller coating damage and ICCP anode displacement.

A Study on Underwater Electro-magnetic Signature Prediction Due to Hull Corrosion of a Naval Ship (함정의 선체 부식에 의한 수중 전자기 신호 예측에 관한 연구)

  • Chung, Hyun-Ju;Yang, Chang-Seob;Ju, Hae-Sun;Jeon, Jae-Jin
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.15 no.2
    • /
    • pp.177-185
    • /
    • 2012
  • Corrosion currents flow through the seawater due to the different electrochemical potential between a hull and a propeller under the draft line of ship. Additionally, in order to protect the hull and other sensitive anodic parts of the ship from corrosion, the corrosion protection system, called impressed current cathodic protection(ICCP) equipment has been installed in most naval ships. Those currents could be harmful to the electromagnetic silencing of the naval ship because sea mines are triggered by even a feeble field value. In this paper, we described electric and corrosion related magnetic fields by ship's galvanic corrosion and a corrosion protection system, and prediction results of electric and corrosion related magnetic fields at any depth for the model ship.

Effect of flow velocity on corrosion rate and corrosion protection current of marine material (해양 금속재료의 부식속도와 방식전류에 미치는 유속의 영향)

  • Lee, Seong Jong;Han, Min Su;Jang, Seok Ki;Kim, Seong Jong
    • Corrosion Science and Technology
    • /
    • v.14 no.5
    • /
    • pp.226-231
    • /
    • 2015
  • In spite of highly advanced paint coating techniques, corrosion damage of marine metal and alloys increase more and more due to inherent micro-cracks and porosities in coatings formed during the coating process. Furthermore, flowing seawater conditions promote the breakdown of the protective oxide of the materials introducing more oxygen into marine environments, leading to the acceleration of corrosion. Various corrosion protection methods are available to prevent steel from marine corrosion. Cathodic protection is one of the useful corrosion protection methods by which the potential of the corroded metal is intentionally lowered to an immune state having the advantage of providing additional protection barriers to steel exposed to aqueous corrosion or soil corrosion, in addition to the coating. In the present investigation, the effect of flow velocity was examined for the determination of the optimum corrosion protection current density in cathodic protection as well as the corrosion rate of the steel. It is demonstrated from the result that the material corrosion under dynamic flowing conditions seems more prone to corrosion than under static conditions.

A Study on the Development of a Control and Monitoring System for Impressed Current Corrosion Protection (선박용 차세대 외부전원방식 제어 및 감시 시스템 UNIT 개발)

  • Kim, Y.B.;Kim, B.Y.;Suh, J.H.;Kim, J.W.
    • Journal of Power System Engineering
    • /
    • v.10 no.2
    • /
    • pp.104-110
    • /
    • 2006
  • Corrosion has been around for all of recorded history. Cathodic protection is the electrical solution to the corrosion problem. Corrosion is not exactly a new topic. It has been around since the beginning of time. Corrosion is simply the loss of material resulting from current leaving a metal, following through a medium, and returning to the metal at a different point. Corrosion takes many forms and has various names, such as oxidation, rust, chemical, and bacteria action. Regardless of the agent, all corrosion is the result of electrical current flow. Various methods are used to treat corrosion or to try to prevent ti. Some of these include chemical treatment. coatings, and electrical current. Especially, proper impressed current can stop corrosive action on the protected surface. In this article, we introduce the Impressed Current Cathodic Protection (ICCP) Control and monitoring system developed by ourselves. The ICCP system is composed of a power supply, anode, reference electrode and controller. The main issue is to control the current flow on the desired value such that it is possible to force a metal to be more negative(cathodic) than the natural state. From the this process, we can achieve the cathodic protection. Of course, in the developed system, the necessary functions are possessed, such as remote control, monitoring of system fault detection etc. Some experimental results show the system performance and usefulness.

  • PDF