• Title/Summary/Keyword: Corrosion Properties

Search Result 1,757, Processing Time 0.025 seconds

High Temperature Corrosion Properties of Heat Resistant Chrome Steels in SO2 Atmosphere (고온 이산화황 환경 내 내열 크롬강에 대한 부식특성 연구)

  • Lee, Han-sang;Jung, Jine-sung;Kim, Eui-hyun
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.2
    • /
    • pp.99-106
    • /
    • 2009
  • The high temperature corrosion properties of heat resistant steels were investigated in oxidation atmosphere including sulfur dioxide. The heat resistant steels of T22, T92, T122, T347HFG and T304H were evaluated at 620, $670^{\circ}C$ for 400 hours. The corrosion rates showed a decreasing tendency while chrome contents of those steels increased from 2 mass.% to 19 mass.%. The in crease in temperature increasement has an more effect on the corrosion rates of low chrome steels than high chrome steels. The weight gains of T22, T92, T304H at $670^{\circ}C$ were 3.7, 1.65, 1.23 times compared with those at $620^{\circ}C$. The external scale formed on T22 was composed of hematite, magnetite and Fe-Cr spinel and internal layer including iron oxide mixed with sulfide. The scales formed on T92, T122, T304H consisted of an outer layer of hematite and inner layer of chrome oxide and hematite. The proportion of chrome oxide at inner layer was increased when the chrome contents in heat resistant steels were increased.

A Study on Corrosion Properties of Reinforced Concrete Structures in Subsurface Environment (지중 환경하에서의 철근콘크리트 구조물의 부식 특성 연구)

  • Kwon, Ki-jung;Jung, Haeryong;Park, Joo-Wan
    • The Journal of Engineering Geology
    • /
    • v.26 no.1
    • /
    • pp.79-85
    • /
    • 2016
  • A concrete silo plays an important role in subsurface low- and intermediate-level waste facilities (LILW) by limiting the release of radionuclides from the silo geosphere. However, due to several physical and chemical processes the performance of the concrete structure decreases over time and consequently the concrete loses its effectiveness as a barrier against groundwater inflow and the release of radionuclides. Although a number of processes are responsible for degradation of the silo concrete, it is determined that the main cause is corrosion of the reinforcing steel. Therefore, the time it takes for the silo concrete to fail is calculated based on two factors: the initiation time of corrosion, defined as the time it takes for chloride ions to penetrate through the concrete cover, and the propagation time of corrosion. This paper aims to estimate the time taken for concrete to fail in a LILW disposal facility. Based on the United States Department of Energy (DOE) approach, which indicates that concrete fails completely once 50% of the volume of the reinforcing steel corrodes, the corrosion propagation time is calculated to be 640 years, which is the time it takes for corrosion to penetrate 0.640 cm into the reinforcing steel. In addition to the corrosion propagation time, a diffusion equation is used to calculate the initiation time of corrosion, yielding a time of 1284 years, which post-dates the closure time of the LILW disposal facility if we also consider the 640 years of corrosion propagation. The electrochemical conditions of the passive rebar surface were modified using an acceleration method. This is a useful approach because it can reduce the test time significantly by accelerating the transport of chlorides. Using instrumental analysis, the physicochemical properties of corrosion products were determined, thereby confirming that corrosion occurred, although we did not observe significant cracks in, or expansion of, the concrete. These results are consistent with those of Smartet al., 2006 who reported that corrosion products are easily compressed, meaning that cracks cannot be discerned by eye. Therefore, it is worth noting that rebar corrosion does not strongly influence the hydraulic conductivity of the concrete.

Failure Probability of Corrosion Pipeline with Varying Boundary Condition

  • Lee, Ouk-Sub;Pyun, Jang-Sik
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.7
    • /
    • pp.889-895
    • /
    • 2002
  • This paper presents the effect of external corrosion, material properties, operation condition and design thickness in pipeline on failure prediction using a failure probability model. The predicted failure assessment for the simulated corrosion defects discovered in corroded pipeline is compared with that determined by ANSI/ASME B31G code and a modified B31G method. The effects of environmental, operational, and random design variables such as defect depth, pipe diameter, defect length, fluid pressure, corrosion rate, material yield stress and pipe thickness on the failure probability are systematically studied using a failure probability model for the corrosion pipeline.

Electrochemical Adsorption Properties and Inhibition of Zinc Corrosion by Two Chromones in Sulfuric Acid Solutions

  • Fouda, Abd El-Aziz S.;Nazeer, Ahmed Abdel;Saber, Ahmed
    • Journal of the Korean Chemical Society
    • /
    • v.58 no.2
    • /
    • pp.160-168
    • /
    • 2014
  • The electrochemical behavior and corrosion inhibition of zinc in 0.5 M $H_2SO_4$ in the absence and presence of some chromones has been investigated using weight loss, potentiodynamic polarization, electrochemical impedance spectroscopy (EIS) and electrochemical frequency modulation (EFM) techniques. The presence of these investigated compounds in the corrosive solutions decrease the weight loss, the corrosion current density, and double layer capacitance but increases the charge transfer resistance. Polarization studies were carried out at room temperature, and showed that all the studied compounds act as mixed type inhibitors with a slight predominance of cathodic character. The effect of temperature on corrosion inhibition has been studied and the thermodynamic activation and adsorption parameters were determined and discussed. The adsorption of the investigated compounds on zinc was found to obey Langmuir adsorption isotherm.

Failure Analysis of Welded Pipe in Water Supplies for Apartment

  • Lee, Jong Kwon;Hong, Kyung Tae;Hwang, Woon Seok;Koh, Yong Tae;Park, Yong Soo
    • Corrosion Science and Technology
    • /
    • v.3 no.2
    • /
    • pp.67-71
    • /
    • 2004
  • Galvanized Steel pipes have been widely used in industries and apartments, Unexpected early leakage has been found in an apartment. Tunneling corrosion or penetration was found in the water supply pipes. The chemical compositions of the pipes and properties of coating layer were evaluated. The pipes met the specification of KS D 3507. The cause of early failure was analyzed through the examination of macrostructures and microstructures, It was found that the pipes were failed by grooving corrosion, which resulted from galvanic corrosion of weld bead and matrix.

Seismic damage estimation of reinforced concrete framed structures affected by chloride-induced corrosion

  • Anoop, M.B.;Rao, K. Balaji
    • Earthquakes and Structures
    • /
    • v.9 no.4
    • /
    • pp.851-873
    • /
    • 2015
  • A methodology for estimation of statistical properties (viz. mean and standard deviation) of the expected seismic damage to reinforced concrete framed structures subject to corrosion of reinforcement, over a specified reference time (typically the service life of the structure) is proposed in this paper. The damage to the structure under the earthquake loading is characterised by the damage index, determined using the modified Park and Ang damage model. The reduction in area, yield strength and strain at ultimate of steel reinforcement, and the reduction in compressive strength of cover concrete due to corrosion are taken into account in the estimation of damage. The proposed methodology is illustrated through an example problem. From the results obtained, it is noted that there is an increase of about 70% in the mean value of expected seismic damage to the reinforced concrete frame considered over a reference time of 30 years when effect of corrosion is taken into consideration. This indicates that there is a need to consider the effect of corrosion of reinforcement on the estimation of expected seismic damage.

A Study on Corrosion Failure of a Weathering Steel Weldment with Various Applied Potentials in Acid-chloride Solution (산-염소이온 분위기의 인자전위에 따른 내후성강 용접부의 부식파괴에 관한 연구)

  • 최윤석;김정구;김종집;이병훈
    • Journal of Welding and Joining
    • /
    • v.18 no.3
    • /
    • pp.97-105
    • /
    • 2000
  • The stress corrosion cracking(SCC) and hydrogen embrittlement cracking(HEC) characteristics of a weathering steel weldment were investigated in aerated acid-chloride solution. The electrochemical properties of weldment were investigated by polarization test and galvanic corrosion test. Weathering steel did not show passive behavior in the acid-chloride solution. Galvanic corrosion between the weld metal and the base metal was not observed because the base metal was anodic to the weld metal. The slow-strain-rate tests(SSRT0 were conducted at a constant strain rate o 7.87×{TEX}$10^{-7}${/TEX}/s at corrosion potential, and at potentiostatically controlled anodic and cathodic potentials. The weldment of weathering steel was susceptible to both anodic dissolution SCC and hydrogen evolution HEC.

  • PDF

The comparison between experimental and FEA results for crack initiation due to corrosion of reinforcement (콘크리트 구조물의 철근부식으로 인한 균열발생에 관한 실험적, 해석적 결과의 비교)

  • 장상엽;김용철;조용범
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.693-698
    • /
    • 2003
  • Corrosion of reinforcement and deterioration of concrete short the lifetime of reinforced concrete structure and affect the safety of the structure. In particular, the corrosion of reinforcement causing the inner pressure of the interface between the concrete and reinforcement is known to significantly contribute to the premature deterioration of concrete structure. Several attempts have been made to predict the cracking time of the concrete structure. However, problems such as the lack of reproducibility of concrete tests and non-uniformity of materials have hampered thess kinds of studies. Thus, the mechanism of the concrete cracking due to reinforcement corrosion is in the way. This studymeasured the mechanical properties of corrosion products using the nano-indentation test method. Likewise, the critical thickness of corrosion products for the cracking of concrete cover was investigated using the finite element and experimental methods.

  • PDF

A Study on the Corrosion Characteristics of a Metal Surface by Laser-Induced Breakdown Spectroscopy (레이저 유도 플라즈마 분광분석법을 적용한 금속표면의 부식 특성에 관한 연구)

  • Kang, Dongchan;Kim, Joohan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.1
    • /
    • pp.83-89
    • /
    • 2017
  • The corrosion of metal specimens was analyzed in this study using laser-induced breakdown spectroscopy. The samples used in the study were magnesium alloys and corrosion, and standard specimens were prepared and analyzed using surface and depth analysis. The spectral wavelengths used in the oxide layer analysis were 777.196 nm, 777.421 nm, and 777.543 nm. The spectral line of the surface corrosion was confirmed by experimentation, and surface micro morphology analysis was performed using an optical microscope. Approximately $100{\mu}m$ corrosion depth was confirmed via laser irradiation in the depth direction. The results of laser-induced breakdown spectroscopy and the SEM-EDS analysis were compared and analyzed.

Effects of Ni Coating on the Surface Characteristics of Drawed Stainless Steel Wire (인발가공된 스테인리스강선의 표면특성에 미치는 Ni코팅의 영향)

  • 최한철
    • Journal of the Korean institute of surface engineering
    • /
    • v.36 no.5
    • /
    • pp.398-405
    • /
    • 2003
  • The stainless steel wire requires good corrosion resistance and mechanical properties, such as drawing ability, combined with a high resistance to corrosion. For increasing drawing ability of stainless steel, Ni coating methods have been used in this study. However, there is no information on the electrochemical corrosion behavior of drawed wires after Ni coating. To investigate corrosion resistance and mechanical property of drawed wire, the characteristics of Ni coated wires have been determined by tensile strength tester, hardness tester, field emission scanning microscope, energy dispersive x-ray analysis and potentiodynamic method in 0.1 M HCl. The drawed stainless steel wires showed the strain-induced martensitic structure, whereas non-drawed stainless steel wire showed annealing twin in the matrix of austenitic structure. The hardness and tensile strength of drawed stainless steel wire were higer than that of non-drawed stainless steel wire. Electrochemical measurements showed that, in the case of drawed stainless steel o ire after Ni coating, the corrosion resistance and pitting potential increased compared with non-coated and drawed stainless steel wire due to decrease in the surface roughness.