• Title/Summary/Keyword: Corrosion Measurement

Search Result 432, Processing Time 0.029 seconds

Study on Corrosion and Oxide Growth Behavior of Anodized Aluminum 5052 Alloy (알루미늄 5052 합금의 산화피막 성장 및 내식성 연구)

  • Ji, Hyejeong;Jeong, Chanyoung
    • Journal of the Korean institute of surface engineering
    • /
    • v.51 no.6
    • /
    • pp.372-380
    • /
    • 2018
  • Anodization techniques are widely used in the area of surface treatment of aluminum alloys because of its simplicity, low-cost and good corrosion resistance. In this study, we investigated the relationship between the properties (porosity and thickness) of anodic aluminum oxide (AAO) and its corrosion behavior. Aluminum 5052 alloy was anodized in 0.3 M oxalic acid at $0^{\circ}C$. The anodizing of aluminum 5052 was performed at 20 V, 40 V and 60 V for various durations. The corrosion behavior was studied in 3.5 wt % NaCl using potentiodynamic polarization method. Results showed that the pore diameter and thickness increased as voltage and anodization time increased. The relatively thick oxide film revealed a lower corrosion current density and a higher corrosion potential value.

Corrosion Behavior of Carbon Steel in Diluted Sulfuric Acid based on Seawater

  • Kim, Mun Su;Jeong, Jin-A
    • Corrosion Science and Technology
    • /
    • v.18 no.3
    • /
    • pp.78-85
    • /
    • 2019
  • The International Maritime Organization (IMO) will administer a new 0.5% global sulfur cap on fuel content from 1 January 2020, lowering from the present 3.5% limit. Seawater $SO_x$ (sulfur oxide) scrubbing is especially spray scrubbing and a promising alternative to complying with the IMO regulation. However, the ionization of $SO_2$ (sulfur dioxide) and the $H_2SO_4$ (sulfuric acid) formed from $SO_3$ (sulfur trioxide) is proposed to accelerate corrosion of the internal seawater pipe. Apparently, the corrosion of the scrubber seawater piping system occurs in a severe and frequent manner. Hence, in this study, electrochemical measurement and weight loss of carbon steel (used as seawater pipe in most of the ships) in diluted sulfuric acid solution were investigated to determine corrosion rate, corrosion current density, corrosion potential, electrochemical behavior, and impressed-current density. Accordingly, the corrosion rate of carbon steel sheet in various diluted sulfuric acid solutions was observed to be greater than that in natural seawater, thus suggesting the fundamental data to deal with corrosion problems in scrubber seawater pipe.

Corrosion Behavior of Zn-Al-Mg Alloy Coated Steel Exposed to Residential Water (일상 생활용수 내 Zn-Al-Mg계 합금도금강재의 부식거동)

  • Jae Won Lee;Sung Jin Kim
    • Corrosion Science and Technology
    • /
    • v.22 no.5
    • /
    • pp.387-392
    • /
    • 2023
  • The objective of this study was to evaluate corrosion resistance of Zn-Al-Mg alloy coated steel in residential water with trace quantities of Cl-. Comparative evaluations were performed using two commercial coated steel products, GI and Galvalume, as reference samples. Examination of corrosion morphology and measurement of weight loss revealed that the Zn-Al-Mg alloy coated steel exhibited higher corrosion resistance than reference samples. This finding suggests that the alloy coated steel possesses long-term corrosion resistance not only in highly Cl- concentrated environments such as seawater, but also in environments with extremely low levels of Cl- found in residential water. The primary factor contributing to the superior corrosion resistance of the Zn-Al-Mg alloy coated steel in residential water is the formation of an inhibiting corrosion product composed primarily of two phases: Zn5(OH)6(CO3)2 and Zn5(OH)8Cl2·H2O. The preferential dissolution of Mg from the corroded coating layer can increase alkalinity, which might enhance the thermodynamical stability of Zn5(OH)6(CO3)2.

Evaluation of Corrosivity of Antifreeze for Automobiles Containing Non-amine Type Corrosion Inhibitors for Copper (Non-amine계 부식방지제를 포함하는 자동차용 부동액의 구리 부식성 평가)

  • Soh, Soon-Young;Chun, Yong-Jin;Park, In-Ha;Han, Sang-Mi;Jang, Hee-Jin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.2
    • /
    • pp.619-626
    • /
    • 2020
  • The development of new antifreeze mixtures containing non-amine-type corrosion inhibitors, which considers environmental protection, has become a major issue. In this study, four non-amine-type corrosion inhibitors were synthesized and used to produce five kinds of new antifreeze for automobiles to evaluate the rate of copper corrosion. The effects were evaluated by the weight change, surface observation, roughness measurement, and measurement of copper elution in the solution. The amount of copper eluted measured by ICP from Sample 4 was small, and the elution rate was prolonged. Sample 4 showed the best anti-corrosion performance owing to a corrosion suppression effect by passivating copper because the metal surface was smooth after the test, and the corrosion product layer was formed evenly on the surface as small local corrosion was observed. The major corrosion inhibitor added to Sample 4 was 1-aminomethyl(N',N'-di(2-hydroxyethyl)benzotrazole, which contained a certain amount in Sample 5 to show relatively high local corrosion but passivation in progress. Therefore, among the four corrosion inhibitors, 1-aminomethyl(N',N'-di(2-hydroxyethyl)benzotrazole had the highest corrosion inhibitory effect. This corrosion inhibitor prevents corrosion by promoting the passivation of copper on the antifreeze.

The Study on the Corrosion Property of the Zn-Mg Alloy Coatings with Various Mg Contents using EIS Measurement (EIS 분석을 통한 Mg 함량에 따른 Zn-Mg 박막의 부식 특성에 관한 연구)

  • Bae, Ki-Tae;La, Joung-Hyun;Kim, Kwang-Bae;Lee, Sang-Yul
    • Journal of the Korean institute of surface engineering
    • /
    • v.47 no.6
    • /
    • pp.330-334
    • /
    • 2014
  • In this study, the Zn-Mg alloy coatings with various Mg contents were deposited using an unbalanced magnetron sputtering process. Their surface microstructure, chemical composition, phase, and corrosion property were investigated. The microstructure of the Zn-Mg coatings changed from porous microstructure to dense one with increasing Mg contents in the coatings. As Mg contents in coatings increased, intermetallic phases such as $Mg_2Zn_{11}$ and $MgZn_2$ were detected from X-ray diffraction (XRD) results. The corrosion resistance of the Zn-Mg alloy coatings was investigated quantitatively using electrochemical impedance spectroscopy (EIS) measurement with 3.5% NaCl solution. The results of EIS measurement showed that the charge transfer resistance and the phase angle of the Zn-Mg alloy coatings were increased from $162.1{\Omega}{\cdot}cm^2$ to $558.8{\Omega}{\cdot}cm^2$ and from about $40^{\circ}$ to $60^{\circ}$ with increasing Mg contents from 5.1 wt.% to 15.5 wt.% in the coatings. These results demonstrate that the Zn-Mg coatings with increasing Mg contents showed an enhanced corrosion resistance.

An Experimental Study on Steel Bar Corrosion of Reinforced Concrete Structure (철근콘크리트 구조물의 철근부식에 관한 실험 연구)

  • Chae, Young-Suk;Choi, Il-Yoon;Min, In-Ki
    • Journal of the Korean Society of Safety
    • /
    • v.28 no.6
    • /
    • pp.29-35
    • /
    • 2013
  • The purpose of this study is to investigate the steel bar corrosion and degree of reinforced concrete bridge, and analyze the cause of corrosion occurrence. Therefore they could ensure the durability and stability as to suggest the corrosion prevention of reinforced concrete structure. To study the corrosion state reinforced concrete structure, We investigate the cover of concrete, the compressive strength by schmidt hammer, the neutralization test of site, the compressive strength of core and the measurement of neutralized depth. As the results of test, the corrosion-grade of reinforced concrete structure which the degree of corrosion is 3, 4 degree get to 18% in the used time of 40 years and the time elapsed of 25 years. Therefore the corrosion of steel bar give rise to public discussion. The degree of corrosion is serious, and the neutralization come to the cover of concrete.

Monitoring Cathodic Shielding and Corrosion under Disbonded Coatings

  • Varela, F.;Tan, M. YJ;Hinton, B.;Forsyth, M.
    • Corrosion Science and Technology
    • /
    • v.16 no.3
    • /
    • pp.109-114
    • /
    • 2017
  • Monitoring of corrosion is in most cases based on simulation of environmental conditions on a large and complex structure such as a buried pipeline using a small probe, and the measurement of thermodynamics and kinetics of corrosion processes occurring on the probe surface. This paper presents a hybrid corrosion monitoring probe designed for simulating deteriorating conditions wrought by disbonded coatings and for measuring current densities and distribution of such densities on a simulated pipeline surface. The concept of the probe was experimentally evaluated using immersion tests under cathodic protection (CP) in high resistivity aqueous solution. Underneath the disbonded area, anodic currents and cathodic currents were carefully measured. Anodic current densities were used to calculate metal loss according to Faraday's law. Calculated corrosion patterns were compared with corrosion damage observed at the surface of the probe after a series of stringent tests. The capability of the probe to measure anodic current densities under CP, without requiring interruption, was demonstrated in high resistivity aqueous solution. The pattern of calculated metal loss correlated well with corrosion products distribution observed at the array surface. Working principles of the probe are explained in terms of electrochemistry.

Corrosion Characteristics of Welding Zones by Laser and TIG Welding of 304 Stainless Steel

  • Moon, Kyung-Man;Lee, Myung-Hoon
    • Corrosion Science and Technology
    • /
    • v.9 no.6
    • /
    • pp.294-299
    • /
    • 2010
  • Two types of welding methods were performed on austenitic 304 stainless steel: laser welding and TIG welding. The differences of the corrosion characteristics of the welded zones from the two welding methods were investigated with electrochemical methods, such as measurement of the corrosion potential, polarization curves, cyclic voltammogram, etc. The vickers hardness of all laser-welded zones (WM:Weld Metal, HAZ:Heat Affected Zone, BM:Base Metal) was relatively higher while their corrosion current densities exhibited a comparatively lower value than those which were TIG welded. In particular, the corrosion current density of the TIG-welded HAZ had the highest value among all other welding zones, which suggests that chromium depletion due to the formation of chromium carbide occurs in the HAZ, which is in the sensitization temperature range, thus it can easily be corroded with an active anode. Intergrenular corrosion was also observed at the TIG-welded HAZ and WM zones. Consequently, we can see that corrosion resistance of all austenitic 304 stainless steel welding zones can be improved via the use of laser welding.

AN ELECTROCHEMICAL STUDY ON THE CORROSION OF DENTAL AMALGAM (치과용 아말감의 부식(腐蝕)에 관한 전기화학적 연구)

  • Chang, Gye-Bong
    • Restorative Dentistry and Endodontics
    • /
    • v.6 no.1
    • /
    • pp.115-122
    • /
    • 1980
  • The corrosion of silver amalgam is regarded as one of major causes in the failures of dental amalgam restorations. To evaluate the corrosion resistance of dental amalgam alloys, electrochemical tests such as potential and polarization measurement were used widely. But these commonly used methods have not provided the sufficient informations on relative resistance of amalgam to corrosion. In this experiment, the corrosion currents were measured using electronic potentiostat to compare some commercial dental amalgam alloys. All alloys were triturated in a amalgamator and condensed into a mold described in A.D.A. Specification No. 1 to produce cylinder form specimens of 4mm diameter by 5mm long. After specimen kept for 1 week at $37^{\circ}C$, each specimen was embedded in epoxy resin. The surfaces of specimens were then polished with a emery paper, diamond dust, and $Al_2O_3$. These specimens were immersed in artifical saliva kept at $37^{\circ}C$, and currents of each specimen were measured for 24 hours at 0.0volt (SCE). The author obtained conclusions as follows: 1. High copper amalgam showed superior resistance against corrosion to conventional amalgam, but a pellet form of high copper amalgam seemed to be susceptible to corrosion. 2. In lathe-cut alloys, fine-cut had superior resistance against corrosion to regular-cut. 3. Non-zinc conventional amalgam alloys were more resistant to corrosion than that of zinc containing conventional amalgam alloys. 4. In both of high copper and conventional amalgams, predispensed forms tended to have better resisitance to corrosion than that of pellet forms.

  • PDF

Effect of the Amplitude in Ultrasonic Nano-crystalline Surface Modification on the Corrosion Properties of Alloy 600

  • Kim, Ki Tae;Kim, Young Sik
    • Corrosion Science and Technology
    • /
    • v.18 no.5
    • /
    • pp.196-205
    • /
    • 2019
  • Surface modification techniques are known to improve SCC by adding large compressive residual stresses to metal surfaces. This surface modification technology is attracting attention because it is an economical and practical technology compared to the maintenance method of existing nuclear power plants. Surface modification techniques include laser, water jet and ultrasonic peening, pinning and ultrasonic Nano-crystal surface modification (UNSM). The focus of this study was on the effect of ultrasonic amplitude in UNSM treatment on the corrosion properties of Alloy 600. A microstructure analysis was conducted using an optical microscope (OM), scanning electron microscope (SEM) and electron backscattering diffraction (EBSD). A cyclic polarization test and AC-impedance measurement were both used to analyze the corrosion properties. UNSM treatment influences the corrosion resistance of Alloy 600 depending on its amplitude. Below the critical amplitude value, the pitting corrosion properties are improved by grain refinement and compressive residual stress, but above the critical amplitude value, crevices are formed by the formation of overlapped waves. These crevices act as corrosion initiators, reducing pitting corrosion resistance.