• Title/Summary/Keyword: Corrosion Degradation

Search Result 392, Processing Time 0.022 seconds

Analysis of Degradation Behavior of Structural Steels Depending on Environment (환경에 따른 구조용 강의 열화거동 분석)

  • Lee Chang-Soon;Park In-Gyu;Kim Yong-Ki;Chang Se-Ky
    • Proceedings of the KSR Conference
    • /
    • 2004.06a
    • /
    • pp.171-176
    • /
    • 2004
  • Electro chemical corrosion tests were conducted on two structural steels, SS400 and SM490A, in various solutions with different pH values, All materials showed typical active corrosion behaviors in the solutions, and corrosion potential and current density were measured from the slopes obtained from the Tafel curves using linear polarization method. Corrosion potential increased in the acidic region and then decreased depending on the pH values of the solutions. All materials showed the fast corrosion rate in artificial acid rain(pH=4.7), but the slower corrosion rate was observed in NaOH solution(pH=12.0) for SS400 and in distilled water(pH=7.0) for SM490A, respectively, which is thought to come from the difference in chemical composition of two alloys. Generally homogeneous corrosion occurred in acid rain condition, and almost no corrosion was observed in distilled water in both alloys. NaOH solution produced more corrosion than distilled water, and more corrosion had progressed in SS400 than in SM490A in $3.5\%$ NaCl solution.

  • PDF

Effect of Ambient Temperature and Humidity on Corrosion Rate of Steel Bars in Concrete (환경 온·습도가 콘크리트 내 철근의 부식 속도에 미치는 영향 분석)

  • Du, Rujun;Jang, Indong;Cho, Junghyun;Yi, Chongku
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.05a
    • /
    • pp.307-308
    • /
    • 2021
  • Corrosion of reinforced steel inside concrete is an important cause of performance degradation of reinforced concrete structures and has a profound influence on the durability of structures. In this study, three groups of different reinforced concrete structures exposed to the natural environment were subjected to chloride ion accelerated corrosion tests for up to 180 days. The corrosion velocity and ambient temperature of the samples were measured and recorded every day. Based on Faraday's law, the corrosion speed of steel bars could be measured, and the ambient temperature and humidity around the structure in corresponding time were compared. Through the measurement of up to 180 days, the influence of external ambient temperature and humidity on the corrosion speed of steel bars inside the concrete structure was found out. The results show that there is a good direct proportional relationship between temperature and corrosion speed. When the ambient temperature increases by 15℃, the corrosion rate increases by about one time.

  • PDF

Anti-corrosion impact of green synthesis of Silica nanoparticles for the sports structures in physical exercise activities

  • Zhixin Zhang;Zhiqiang Cai;Khidhair Jasim Mohammed;H. Elhosiny Ali
    • Advances in concrete construction
    • /
    • v.15 no.1
    • /
    • pp.41-46
    • /
    • 2023
  • Sport has no age limit and can be done anywhere and in any condition with minimal equipment. The existence of sports spaces in all parts of the world is considered a citizen's right. One of the activities carried out in this field is installing sports equipment and structures in parks and encouraging citizens to use this equipment for physical health with the least cost and facilities. Installing sports structures in open spaces such as parks is a practical step for developing citizens' sports. Although using devices in parks is acceptable, it is more critical to meet scientific and technical standards. The components of these structures must have high strength and endurance against changes in environmental conditions such as humidity, temperature difference, and corrosion. Among the various causes of material degradation, corrosion has always been one of several fundamental causes of metal equipment failure. Sports structures in open spaces are not safe from corrosion. Uniform corrosion is the most common type of corrosion. This corrosion usually occurs uniformly through a chemical or electrochemical reaction across the surface exposed to the corrosive environment. Rust and corrosion of outdoor sports structures are examples of this corrosion. For this reason, in this research, with the green synthesis of silica nanoparticles and its application in outdoor sports structures, the life span of these structures can be increased for the use of physical exercises as well as their quality.

Corrosion Cost and Corrosion Map of Korea - Based on the Data from 2005 to 2010

  • Kim, Y.S.;Lim, H.K.;Kim, J.J.;Hwang, W.S.;Park, Y.S.
    • Corrosion Science and Technology
    • /
    • v.10 no.2
    • /
    • pp.52-59
    • /
    • 2011
  • Corrosion of metallic materials occurs by the reaction with corrosive environment such as atmosphere, marine, soil, urban, high temperature etc. In general, reduction of thickness and cracking and degradation are resulted from corrosion. Corrosion in all industrial facilities and infrastructure causes large economic losses as well as a large number of accidents. Economic loss by corrosion has been reported to be nearly 1-6% of GNP or GDP. In order to reduce corrosion damage of industrial facilities, corrosion map as well as a systematic investigation of the loss of corrosion in each industrial sector is needed. The Corrosion Science Society of Korea in collaboration with 15 universities and institutes has started to survey on the cost of corrosion and corrosion map of Korea since 2005. This work presents the results of the survey on cost of corrosion by Uhlig, Hoar, and input-output methods, and the evaluation of atmospheric corrosion rate of carbon steel, weathering steel, galvanized steel, copper, and aluminum in Korea. The total corrosion cost was estimated in terms of the percentage of the GDP of industry sectors and the total GDP of Korea. According to the result of Input/output method, corrosion cost of Korea was calculated as 2.9% to GDP (2005). Time of wetness was shown to be categories 3 to 4 in all exposure areas. A definite seasonal difference was observed in Korea. In summer and fall, time of wetness was higher than in other seasons. Because of short exposure period (12 months), significant corrosion trends depending upon materials and exposure corrosion environments were not revealed even though increased mass loss and decreased corrosion rate by exposure time.

Study on the Durability Characteristics of the PEM Fuel Cells having Gas Diffusion Layer with Different Micro Porous Layer Penetration Thicknesses (기체확산층의 미세다공층 침투 깊이에 따른 고분자 전해질형 연료전지의 내구성능 저하 분석에 관한 연구)

  • Park, Jaeman;Oh, Hwanyeong;Cho, Junhyun;Min, Kyoungdoug;Lee, Eunsook;Jyoung, Jy-Young
    • Journal of Hydrogen and New Energy
    • /
    • v.24 no.3
    • /
    • pp.216-222
    • /
    • 2013
  • Durability characteristics of Gas Diffusion Layer(GDL) is one of the important issues for accomplishing commercialization of Proton Exchange Membrane Fuel Cell(PEMFC). It is strongly related to the performances of PEMFC because one of the main functions of GDL is to work as a path of fuel, air and water. When the GDL does not work on their proposed functions due to the degradation of durability, mass transfer in PEMFC is disturbed and it might cause the flooding phenomenon. Thus, investigating the durability of GDL is important and understanding the GDL degradation process is needed. In this study, electrochemical degradation with carbon corrosion is introduced. The carbon corrosion experiment is carried out with GDLs which have different MPL penetration thicknesses. After the experiment, the amount of degradation of GDL is measured with various properties of GDL such as weight, thickness and performance of the PEMFC. The degraded GDL shows loss of their properties.

Ultrasonic Cavitation Behavior and its Degradation Mechanism of Epoxy Coatings in 3.5 % NaCl at 15 ℃

  • Jang, I.J.;Jeon, J.M.;Kim, K.T.;Yoo, Y.R.;Kim, Y.S.
    • Corrosion Science and Technology
    • /
    • v.20 no.1
    • /
    • pp.26-36
    • /
    • 2021
  • Pipes operating in the seawater environment faces cavitation degradation and corrosion of the metallic component, as well as a negative synergistic effect. Cavitation degradation shows the mechanism by which materials deteriorate by causing rapid change of pressure or high-frequency vibration in the solution, and introducing the formation and explosion of bubbles. In order to rate the cavitation resistance of materials, constant conditions have been used. However, while a dynamic cavitation condition can be generated in a real system, there has been little reported on the effect of ultrasonic amplitude on the cavitation resistance and mechanism of composites. In this work, 3 kinds of epoxy coatings were used, and the cavitation resistance of the epoxy coatings was evaluated in 3.5% NaCl at 15 ℃ using an indirect ultrasonic cavitation method. Eleven kinds of mechanical properties were obtained, namely compressive strength, flexural strength and modulus, tensile strength and elongation, Shore D hardness, water absorptivity, impact test, wear test for coating only and pull-off strength for epoxy coating/carbon steel or epoxy coating/rubber/carbon steel. The cavitation erosion mechanism of epoxy coatings was discussed on the basis of the mechanical properties and the effect of ultrasonic amplitude on the degradation of coatings.

A Study of The Effect of Corrosion on Heat Transfer in a Heat Exchanger (열교환기에서 부식이 열전달에 미치는 영향에 관한 연구)

  • Kwon, Hyun-Min;Kwon, Jeong-Tae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.9
    • /
    • pp.227-232
    • /
    • 2019
  • Heat pump systems based on ocean thermal energy conversion (OTEC) systems use the temperature difference between deep ocean water and surface ocean water to operate. However, they may have heat transfer degradation due to corrosion on the heat exchanger surface due to the salinity of sea water. This study presents experimental results for the heat transfer decrease of corroded metal tubes with respect to corrosion time. In order to replace high-priced titanium, electro-deposition (ED) coating was performed on aluminum tubes. Aluminum tubes with ED coating thicknesses of 10, 15, and $20{\mu}m$ were tested for double-tube heat exchangers after performing accelerated corrosion for 6, 12, and 18 weeks. The effects of the coating thickness and the corrosion time on the heat transfer degradation were investigated. From the results, the aluminum tube with an ED coating of $20{\mu}m$ thickness can be suggested as a candidate for replacing titanium tubes.

Evaluation of corrosion resistance by electrochemical method for Ni-Cr-Mo-V steel (Ni-Cr-Mo-V강의 전기화학적 방법에 의한 내식성 평가)

  • Kwon, Jae-Do;Moon, Yun-Bae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.9
    • /
    • pp.1422-1431
    • /
    • 1997
  • When the structures are exposed to their own an application for a long period, a number of variables such as strength properties and corrosion resistance, so on are expected to change. In the present investigation the corrosion behavior and resistance for the original and degraded materials of Ni-Cr-Mo-V steel were evaluated under the conditions of pH 3, 6, 9 and 12 in a distilled water environment. The electrochemical polarization technique was employed in this investigation. Based upon the experimental results obtained, the following conclusions were drawn. A severe and uniform corrosion was observed for both original and degraded materials under the condition of pH 3. At pH 6 and pH 9, these materials showed the degradation by a pitting corrosion. The materials under pH 12 environment were degraded by a uniform corrosion. The corrosion rate per year were the highest in the pH 3 environment, followed by pH 12, pH 6 and pH 9 environment in order. The corrosion resistance was decreased from the original material, slow cooled material (10.deg. C/hr) and step cooled material in order.

Life Prediction and Fatigue Strength Evaluation for Surface Corrosion Materials (인공부식재의 피로강도평가와 통계학적 수명예측에 관한 연구)

  • 권재도;진영준;장순식
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.8
    • /
    • pp.1503-1512
    • /
    • 1992
  • The strength evaluation and life prediction on the corrosion part of structure is one of the most important subjects, as a viewpoint of reducing economic loss by regular inspection, maintenance, repair and replace. For this purpose, it has been difficult to obtain the available data on growth of pit depth or growth rate of each pit which depends on time. In this paper, the life prediction and strength evaluation method was suggested for the structure with irregular stress concentration part by surface corrosion. The statistical distribution pattern of corrosion depth and the degree of fatigue strength decline were confirmed according to corrosion period by artificial corrosion of SS41 steel. The life prediction and the fatigue strength evaluation of materials with consideration of the corrosion period on the extreme value statistic analysis by the data of maximum depth of corrosion and on random variable was studied.

Numerical simulation approach for structural capacity of corroded reinforced concrete bridge

  • Zhou, Xuhong;Tu, Xi;Chen, Airong;Wang, Yuqian
    • Advances in concrete construction
    • /
    • v.7 no.1
    • /
    • pp.11-22
    • /
    • 2019
  • A comprehensive assessing approach for durability of reinforced concrete structures dealing with the corrosion process of rebar subjected to the attack of aggressive agent from environment was proposed in this paper. Corrosion of rebar was suggested in the form of combination of global corrosion and pitting. Firstly, for the purposed of considering the influence of rebar's radius, a type of Plane Corrosion Model (PCM) based on uniform corrosion of rebar was introduced. By means of FE simulation approach, global corrosion process of rebar regarding PCM and LCM (Linear Corrosion Model) was regressed and compared according to the data from Laboratoire $Mat{\acute{e}}riaux$ et $Durabilit{\acute{e}}$ des Constructions (LMDC). Secondly, pitting factor model of rebar in general descend law with corrosion degree was introduced in terms of existing experimental data. Finally, with the comprehensive numerical simulation, the durability of an existing arch bridge was studied in depth in deterministic way, including diffusion process and sectional strength of typical cross section of arch, crossbeam and deck slab. Evolution of structural capacity considering life-cycle rehabilitation strategy indicated the degradation law of durability of reinforced arch bridges.