• Title/Summary/Keyword: Corrosion Defects

Search Result 275, Processing Time 0.027 seconds

Formation of Cerium Conversion Coatings on AZ31 Magnesium Alloy

  • Fazal, Basit Raza;Moon, Sungmo
    • Journal of the Korean institute of surface engineering
    • /
    • v.49 no.1
    • /
    • pp.1-13
    • /
    • 2016
  • This review deals with one of the surface modification techniques, chemical conversion coating and particularly cerium-based conversion coatings (CeCC) as a promising substitute for chromium and phosphate conversion coating on magnesium and its alloys. The CeCCs are commonly considered environmentally friendly. The effects of surface preparation, coating thickness, bath composition, and e-paint on the corrosion behavior of CeCCs have been studied on the AZ31 magnesium alloy. This review also correlates the coating microstructural, morphological, and chemical characteristics with the processing parameters and corrosion protection. Results showed that the as-deposited coating system consists of a three layer structure (1) a nanocrystalline MgO transition layer in contact with the Mg substrate, (2) a nanocrystalline CeCC layer, and (3) an outer amorphous CeCC layer. The nanocrystalline CeCC layer thickness is a function of immersion time and cerium salt used. The overall corrosion protection was crucially dependent on the presence of coating defects. The corrosion resistance of AZ31 magnesium alloy was better for thinner CeCCs, which can be explained by the presence of fewer and smaller cracks. On the other hand, maximum corrosion protection was achieved when AZ31 magnesium samples with thin CeCCs are e-painted. The e-paint layer further restricts and hinders the movement of chloride and other aggressive ions present in the environment from reaching the magnesium surface.

A Study on the Corrosion Behavior of Magnesium Alloy Sealed with Chemical Conversion Coating and Sol-gel Coating

  • Lee, Dong Uk;Chaudhari, Shivshankar;Choi, Seung Yong;Moon, Myung Jun;Shon, Min Young
    • Corrosion Science and Technology
    • /
    • v.20 no.4
    • /
    • pp.175-182
    • /
    • 2021
  • Magnesium alloy is limited in the industrial field because its standard electrode potential is -2.363 V vs. NHE (Normal Hydrogen Electrode) at 25 ℃. This high electrochemical activity causes magnesium to quickly corrode with oxygen in air; chemical conversion coating prevents corrosion but causes surface defects like cracks and pores. We have examined the anti-corrosion effect of sol-gel coating sealed on the defected conversion coating layer. Sol-gel coatings produced higher voltage current and smaller pore than the chemical conversion coating layer. The conversion coating on magnesium alloy AZ31 was prepared using phosphate-permanganate solution. The sol-gel coating was designed using trimethoxymethylsilane (MTMS) and (3-Glycidyloxypropyl) trimethoxysilane (GPTMS) as precursors, and aluminum acetylacetonate as a ring-opening agent. The thermal shock resistance was tested by exposing specimens at 140 ℃ in a convection oven; the results showed changes in the magnesium alloy AZ31 surface, such as oxidization and cracking. Scanning electron microscope (FE-SEM) analysis confirmed a sealed sol-gel coating layer on magnesium alloy AZ31. Electrochemical impedance spectroscopy (EIS) measured the differences in corrosion protection properties by sol-gel and conversion coatings in 0.35 wt% NaCl solution, and the potentiodynamic polarization test and confirmed conversion coating with the sol-gel coating show significantly improved resistance by crack sealing.

The Corrosion Behavior of Anti-Graffiti Polyurethane Powder Coatings

  • Rossi, S.;Fedel, M.;Deflorian, F.;Feriotti, A.
    • Corrosion Science and Technology
    • /
    • v.17 no.6
    • /
    • pp.257-264
    • /
    • 2018
  • Anti-graffiti coatings have become more important. These layers must guarantee excellent corrosion protection properties, and graffiti must be easily removable, without reducing protection and aesthetic properties. In this study, anti-graffiti and corrosion behavior of two anti-graffiti polyurethane powder coatings were studied. These layers were deposited on aluminum substrate, with two different surface finishes, smooth, and wrinkled. The action of four different removers are investigated. Graffiti were drawn on coatings by means of red acrylic spray paint. Methyl-ethyl-ketone (MEK) and a "commercial" remover were the most effective solvents, in terms of graffiti removal capability, producing limited change in aesthetical surface aspect for smooth finishing. The wrinkled surface was less resistant. Corrosion protection properties, after removal action and contact with the remover, were evaluate by electrochemical impedance spectroscopy. After approximately 5 hours, coatings were no longer protective due to formation of defects. To simulate the weathering effect, UV-B cyclic test (4 hours of UV exposure followed by 4 hours of saturated humidity at $50^{\circ}C$) were performed for 2000 hours. Gloss and color changes were measured, and electrochemical impedance spectroscopy measurements were performed after aging and graffiti removal.

Suggestion of Deterioration Curve for New-type Coating on Atmospheric Environment by Acceleration Corrosion Test (부식촉진 실험을 통한 대기환경에서 신설 도장계의 노화곡선 제안)

  • Jeong, Young-Soo;Kim, Min-Jeong;Jeon, Seok-Hyeon;Ahn, Jin-Hee;Kim, In-Tae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.2
    • /
    • pp.75-83
    • /
    • 2019
  • In this study, to propose the deterioration curves of urethane, ceramic, polysiloxane and fluorocarbon coating for the steel bridge, an accelerated corrosion tests were carried out. The each coating system wes applied on the top of the specimens, and circular initial defects were introduced with different diameters with 0.5, 1.0, 3.0, 5.0 mm. An accelerated corrosion test condition was used to simulate severe corrosive environment depending on ISO 20340. The deterioration curve of each coating type was evaluated based on deteriorated area from the circular defects. In order to evaluate the coating service life of installed steel bridge using deterioration curve, the acceleration coefficient was calculated at correlation between ISO 20340 and corrosivity categories by ISO 9223 based on field corrosion rate. From test results, the propagation rate of coating deterioration area was different to diameter of circular defects. In case of urethane coating, the coating service lifes of 3% deterioration area was evaluated in 31.8, 15.8, 9.9 and 3.9 years with C2, C3, C4 and C5 category.

IBEM analyses on half-cell potential measurement for NDE of rebar corrosion

  • Kyung, Je-Woon;Tae, Sung-Ho;Lee, Han-Seung;Alver, Yalcin;Yoo, Jo-Hyeong
    • Computers and Concrete
    • /
    • v.4 no.4
    • /
    • pp.285-298
    • /
    • 2007
  • Corrosion of Reinforcement (rebar) is nondestructively estimated by the half-cell potential measurement. As is the case with other nondestructive testings (NDT), understanding of the underlying principles should be clarified in order to obtain meaningful results. Therefore, the measurement of potentials in concrete is analytically investigated. The effect of internal defects on the potentials measured is clarified numerically by the boundary element method (BEM). Thus, a simplified inversion by BEM is applied to convert the potentials on concrete surface to those on rebars, taking into account the concrete resistivity. Because the potentials measured on concrete surface are so sensitive to moisture content, concrete resistivity and surface condition, an inverse procedure to convert the potentials on concrete surface into those on rebars is developed on the basis of BEM. It is found that ASTM criterion is practically applicable to estimate corrosion from the potential values converted. In experiments, an applicability of the procedure is examined by accelerated corrosion tests of reinforced concrete (RC) slabs. For practical use, the procedure is developed where results of IBEM are visualized by VRML (Virtual Reality modeling Language) in three-dimensional space.

Regional Cathodic Protection Design of a Natural Gas Distribution Station

  • Yabo, Hu;Feng, Zhang;Jun, Zhao
    • Corrosion Science and Technology
    • /
    • v.16 no.5
    • /
    • pp.235-240
    • /
    • 2017
  • Regional cathodic protection has significant impact on pipeline integrity management. After risk analyses of a newly built gas distribution station constructed in an area with large dwelling density, risk score was high because of potential threat caused by galvanic corrosion. Except reinforced steel in concrete, there are four kinds of metal buried under earth: carbon steel, galvanized flat steel, zinc rod and graphite module. To protect buried pipeline from external corrosion, design and construction of regional cathodic protection was proposed. Current density was measured with potential using potential dynamic test and boundary element method (BEM) was used to calculate current requirement and optimize best anode placement during design. From our calculation on the potential, optimized conditions for this area were that an applied current was 3A and anode was placed at 40 meters deep from the soil surface. It results in potential range between $-1.128V_{CSE}$ and $-0.863V_{CSE}$, meeting the $-0.85V_{CSE}$ criterion and the $-1.2V_{CSE}$ criterion that no potential was more negative than $-1.2V_{CSE}$ to cause hydrogen evolution at defects in coating of the pipeline.

Corrosion Resistance of SPCC, SPFC590, SPFC780 Steel by Organic/Inorganic Hybrid Solution (Case of different SiO2 polysilicate under a constant melamin) (유/무기하이브리드 용액에 의한 SPCC, SPFC590, SPFC780 강판의 내식성 (일정한 멜라민에서 SiO2 polysilicate 양이 다른 경우))

  • Nam, Ki-Woo;Jeong, Hee-Rok;Lee, Kwang-Ho
    • Journal of Power System Engineering
    • /
    • v.21 no.2
    • /
    • pp.5-13
    • /
    • 2017
  • This study has developed an organic/inorganic hybrid solution according to amount of $SiO_2$ polysilicate, and the amount of melamine is constant. The three types of cold rolled steel were evaluated a corrosion resistance properties by using these solutions. $US_3M_3$ and $US_{11}M_3$ solutions were generate a lot of corrosion. $US_7M_3$ solution was excellent in corrosion resistance, regardless of the steel type. The appearance of coating by $US_3M_3$ and $US_{11}M_3$ solutions were bumpy surface, and were a lot of fine defects. $US_7M_3$ solution was made a sophisticated molecular cross-linking structure inside the coating, it was a slick surface. Other characteristics are exhibited the excellent property for all solutions.

Electrochemical Corrosion Evaluation of Aluminum Alloy Weldment Prepared by GMAW Process (알루미늄 합금 GMAW 용접부의 전기화학적 방법에 의한 내식성 평가)

  • Yang, Ye-Jin;Park, Il-Cho;Lee, Jung-Hyung;Han, Min-Su;Kim, Seong-Jong
    • Journal of the Korean institute of surface engineering
    • /
    • v.50 no.6
    • /
    • pp.498-503
    • /
    • 2017
  • The aim of the present study is to evaluate electrochemical corrosion characteristics of base metal and weldment of Al-Mg alloy in seawater solution. The specimen was 5mm thick 5083-H321 Al alloy plate which was butt-welded using gas metal arc welding (GMAW). To identify the types of inclusions in the weldment, the microstructural observation was performed along with Energy dispersive spectrometer (EDS) analysis. The anodic polarization experiments were performed to evaluate the corrosion characteristics. After the anodic polarization test, the corroded surface was observed by SEM(scanning electron microscope) and EDS. The result of the analysis revealed a large number of voids in the weldment, especially coarse grains and inclusions in the heat affected zone. The corrosion current density of the weldment was found to be approximately 13 times higher than that of the base metal, indicating lower corrosion resistance of the weldment due to the defects in the weldment and the heat affected zone.

Corrosion Resistance Evaluation of Aluminum Thermal Spray Coated AA5083-H321 (알루미늄 열용사 코팅된 AA5083-H321의 내식성 평가)

  • Il-Cho Park;Sungjun Kim;Min-Su Han
    • Corrosion Science and Technology
    • /
    • v.22 no.2
    • /
    • pp.108-114
    • /
    • 2023
  • In this study, anti-corrosion effect was investigated through various electrochemical experiments after applying Al thermal spraying technology to AA5083-H321. Open circuit potential and anodic polarization curves were analyzed through electrochemical experiments in natural seawater. The shape of the surface was observed using a scanning electron microscope (SEM) and a 3D microscope before and after the experiment. Component and crystal structure were analyzed through EDS and XRD. As a result, the surface roughness of AA5083-H321 and the Al thermal sprayed coating layer increased due to surface damage caused by anodic dissolution reaction during the anodic polarization experiment. The corrosion rate of AA5083-H321 was relatively low because the Al thermal spray coating layer contained structural defects such as pores and crevices. Nevertheless, the open circuit potential of the Al thermal spray coating layer in natural seawater was measured about 0.2 V lower than that of AA5083-H321. Thus, a sacrificial anode protection effect can be expected.

A Study on Corrosion Measurement Techniques and Evaluation for Structure of EMU (도시철도차량 구조물에 대한 부식측정기법 적용 및 평가방안 연구)

  • Chung, Jong-Duk;Pyun, Jang-Sik;Hong, Yong-Ki
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.931-938
    • /
    • 2011
  • Nondestructive inspection(NDI) is a testing procedure used to easily inspect an object for internal defects, abnormalities, shape, and structure, etc. without destroying it. Typical candidates for NDI include buildings, railways, aircraft, bridges, underground pipelines and various types of factory equipment. Recent advances in nondestructive evaluation(NDE) technologies have led to improved methods for quality control and in-service inspection, and the development of new options for material diagnostics. Under frame side sill in rolling stocks is designed for preventing corrosion in order to meet mechanical requirements. However during long operation time, there are corrosion in the under frame side sill caused by environmental effect, vibration and etc. This paper introduces the methods of a survey and assessment on NDI applications in Electric Multiple Units(EMU). The main objective of this paper was to obtain information on various applications and evaluation of NDI technology in EMU.

  • PDF