• Title/Summary/Keyword: Correlation Between Water Quality

Search Result 501, Processing Time 0.025 seconds

Analysis of Relationship Between Water Quality Parameters in Agricultural Irrigation Reservoirs and Land Uses of Associated Watersheds (농업용저수지 유역의 토지이용과 수질항목 간의 상관관계 분석)

  • Yoon, Chun-Gyeong;Lee, Sae-Bom;Jung, Kwang-Wook;Han, Jung-Yoon
    • Korean Journal of Ecology and Environment
    • /
    • v.40 no.1
    • /
    • pp.31-39
    • /
    • 2007
  • Monitoring data of 48 agricultural irrigation reservoirs from 1999 to 2004 was analyzed for water quality characteristics including biochemical oxygen demand $(BOD_5)$, chemical oxygen demand (COD), total nitrogen (TN), total phosphorus (TP), and chl-${\alpha}$. Land uses of the watersheds associated with these reservoirs were determined for residential, forest, upland, paddy and miscellaneous, and regressed against water quality characteristics. Correlation analysis showed that forest land use was negatively correlated with all the water quality characteristics implying it's beneficial effects in water quality perspectives. Other land uses including residential, upland, and paddy generally illustrated positive correlation with water quality characteristics, which indicates most human activities of the watershed could degrade water quality of the receiving water bodies. Paddy land use partially contributed to the water quality degradation in contrast to the previous studies. It might be attributed to the relatively clean water quality of the study area, where even slight pollutant loading could degrade sensitively water quality. Further investigation is recommended for the effect of proximity as well as land use portions on the water quality of receiving water body.

EC or TDS as a Water Pollution Criteria in Water Education Program (물환경 체험 및 탐구 활동에서 수질오염지표로서 전기전도도(EC) 혹은 총용존고형물질(TDS)의 활용에 대한 고찰)

  • Ahn, Samyoung
    • Journal of Environmental Science International
    • /
    • v.31 no.4
    • /
    • pp.341-356
    • /
    • 2022
  • Electrical Conductivity (EC) or Total Dissolved Solids (TDS) has been often used to evaluate the water quality in some water education program for children and youth. This study attempted to find out whether EC (or TDS) can be used as a water pollution criteria in water education program. To clarify it, we used the water analysis data of July 2019 and January 2020 from Water Environment Information System. Data from 332 points in Han-river were used to investigate correlation between the parameters, such as BOD, COD, TN, TP vs EC. Correlation(r) for all data of BOD vs. EC was 0.347 for July 2019 and 0.483 for January 2020. No correlation was observed for BOD Ia and BOD Ib for July 2019 (r=-0.041, -0.030, respectively) and BOD Ia for January 2020 (r=0.041). Better correlation for all data of COD vs. EC was obtained (r=0.543 for July 2019 and r=0.610 for January 2020). However, no correlation was observed for COD Ia for January 2020. High vlaue of EC or TDS does not always mean water pollution, especially for clean water environment. Thus, EC (or TDS) alone can not be used as a water pollution criteria.

Correlation analysis between TOC and organic matter indices in influent and effluent of public sewage treatment facilities (공공하수처리시설 유입수 및 방류수에서 TOC와 유기물질 관리지표간의 상관성 분석)

  • Son, Dong-Jin;Jeong, Dong-Hwan;Park, Kyoo-Hong
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.4
    • /
    • pp.122-129
    • /
    • 2021
  • As the total organic carbon (TOC) becomes a new water quality standard as an organic matter (OM) index for public sewage treatment facilities (PSTFs) in Korea from 2021, a comparison study needs to be conducted by examining the correlation between TOC and the existing OM indices (DOC, BOD5, CODMn, CODCr). 500 PSTFs were categorized by process configuration and capacity, and correlation between OM indices in influent and effluent was analyzed. The CODMn/TOC showed higher correlation than other OM indices. This results can be used to basic data for various research associated with TOC.

Water quality observation using Principal Component Analysis

  • Jeong, Jong-Chul;Yoo, Sing-Jae
    • Proceedings of the KSRS Conference
    • /
    • 1998.09a
    • /
    • pp.58-63
    • /
    • 1998
  • The aim of the present study is to define and tentatively to interpret the distribution of polluted water released from Lake Sihwa into Yellow Sea using Landsat TM. Since the region is an extreme case 2 water, empirical algorithms for chlorophyll-a and suspended sediments have limitations. This work focuses on the use of multi-temporal Landsat TM. We applied PCA to detect evolution of spatial feature of polluted water after release from the lake. The PCA results were compared with in situ data, such as chlorophyll-a, suspended sediments, Secchi disk depth (SDD), surface temperature, radiance reflectance at six bands. The in situ remote sensing reflectance was analysed with PCA. On the basis of these In situ data we found good correlation between first Principal Component and Secchi disk depth ($R^2$=0.7631), although other variables did not result in such a good correlation. The problems in applying PCA techniques to multi-spectral remote sensed data are also discussed.

  • PDF

A Survey on the Contents of Fluoride, Calcium, and Magnesium of Reservoir Water on a Stream in the Jeon-buk Area of Korea (전북 지역 일부 수원지의 물에서 불소, 칼슘 및 마그네슘 함량에 관한 조사 연구)

  • 이인규;김종규
    • Journal of Environmental Health Sciences
    • /
    • v.29 no.2
    • /
    • pp.38-44
    • /
    • 2003
  • This study was performed to investigate the levels of fluoride (F), calcium (Ca), and magnesium (Mg) in water samples taken from five reservoirs or direct sources on a stream used for agricultural or domestic water in the Iksan and Wanjoo areas, Jeon-buk, Korea, and to find a possible link between Ca or Mg and fluoride in water sources in theses areas. The samples were collected by the recommendation methods of the World Health Organization and analyzed by the recommendations of the Japanese Standard Methods. Statistical analyses were performed by the analysis of variance and correlation analysis. The F levels in water samples wire 0.80~2.53 ppm. In four sampling sites the water fluoride levels exceeded 1 ppm. which if the recommended level for fluorosis/caries control. The Ca levels in water samples were 6.82~12.98 ppm, and the Mg levels were 0.30~1.97 ppm, which are lower compared with the natural levels of water sources previously reported by other investigators. This study showed a positive correlation between Ca and Mg (r= 0.8779. p<0.01) and a negative correlation between F and Ca (r=-0.6974, p<0.05) and also between F and Mg (r=-0.5581) in the water samples. However, the study did not find remarkable relationships in fluoride levels between sampling sites. These results support the fact that there were epidemics of dental fluorosis in this area. The lack of significant positive correlations in fluoride levels between sampling sites suggests that there may be some pathways for the transfer of the metal to the water through other environmental media besides the water course. Long-term epidemiological studies are needed on the relationship between high F together with low Ca and Mg levels in the water, and total human health in this community. There should alto be a long-term monitoring of the water quality in this area.

Mitigation Effect of Watershed Land Use due to Riparian Vegetation on Stream Water Quality (수변림으로 인한 유역 토지이용이 하천 수질에 미치는 관계 완화효과 연구)

  • Hyeonil Kwon;Jong-Won Lee;Sang Woo Lee
    • Korean Journal of Ecology and Environment
    • /
    • v.55 no.4
    • /
    • pp.320-329
    • /
    • 2022
  • Urban areas in watersheds increase the impervious surface, and agricultural areas deteriorate the water quality of rivers due to the use of fertilizers. As such, anthropogenic land use affects the type, intensity and quantity of land use and is closely related to the amount of substances and nutrients discharged to nearby streams. Riparian vegetation reduce the concentration of pollutants entering the watershed and mitigate the negative impacts of land use on rivers. This study analyzes the data through correlation analysis and regression analysis through point data measured twice a year in spring and autumn in 21 selected damaged tributary rivers within the Han River area, and then uses a structural equation model to determine the area land use. In the negative impact on water quality, the mitigation effect of riparian vegetation was estimated. As a result of the correlation analysis, the correlation between the agricultural area and water quality was stronger than that of the urban area, and the area ratio of riparian vegetation showed a negative correlation with water quality. As a result of the regression analysis, it was found that agricultural areas had a negative effect on water quality in all models, but the results were not statistically significant in the case of urban areas. As a result of the model estimated through the structural equation, BOD, COD, TN, and TP showed a mitigation effect due to the accumulation effect of river water quality through riparian vegetation in agricultural areas, but the effect of riparian vegetation through riparian vegetation was found in urban areas. There was no These results were interpreted as having a fairly low distribution rate in urban areas, and in the case of the study area, there was no impact due to riparian forests due to the form of scattered and distributed settlements rather than high-density urbanized areas. The results of this study were judged to be unreasonable to generalize by analyzing the rivers where most of the agricultural areas are distributed, and a follow-up to establish a structural equation model by expanding the watershed variables in urban areas and encompassing the variables of various factors affecting water quality research is required.

The Relationship between the Estimated Water Content and Water Soluble Organic Carbon in PM10 at Seoul, Korea (서울시 PM10 내의 수용성 유기탄소와 수분함량과의 상관성 분석)

  • Lee, Seung Ha;Kim, Yong Pyo;Lee, Ji Yi;Lee, Seung Muk
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.33 no.1
    • /
    • pp.64-74
    • /
    • 2017
  • In this study, we have analyzed relationship between the measured Water Soluble Organic Carbon (WSOC) concentrations and the estimated aerosol water content of $PM_{10}$ (particulate matter with an aerodynamic diameter of less than or equal to $10{\mu}m$) for the period between September 2006 and August 2007 at Seoul, Korea. Water content of $PM_{10}$ was estimated by using a gas/particle equilibrium model, Simulating composition of Atmospheric Particles at Equilibrium 2 (SCAPE2). The WSOC concentrations showed low correlation with Elemental Carbon (EC), but Water Insoluble Organic Carbon (WISOC) were highly correlated with EC. It seemed that hydrophilic groups were produced by secondary formation rather than primary formation. As with the previous studies, WSOC showed good correlation with secondary ions ($NO_3{^-}$, $SO_4{^{2-}}$, $NH_4{^+}$), especially WSOC was highly correlated with $NO_3{^-}$ that is a secondary ion formed by photochemical oxidation from more local sources than $SO_4{^{2-}}$. No apparent correlation between the measured WSOC and estimated water content was observed. However, WSOC showed good correlation with estimated water content when it was assumed that relative humidity was higher than the deliquescence relative humidity of the system. In conclusion, WSOC is correlated with water content by hygroscopic ions and it is expected that nitrate play an important role among the water content and WSOC.

The Characteristics of Drinking Groundwater Quality in Daejeon reclamation (대전광역시 음용지하수 수질의 특성)

  • Han, Woon Woo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.2 no.3
    • /
    • pp.37-45
    • /
    • 2001
  • The characteristics of drinking groundwater quality was analyzed by investigating observed data during 1995-1997 in Daejeon city. As the analysis of observed data, the 30.1% of them were over the drinking water quality standards in Daejeon city and the unfit ratios of each region were 36.4% at Dong-Gu, 32.3% Daedeog-Gu, 31.2% Jung-Gu, 30.0% Seo-Gu and 25.2% at Yusoung-Gu. It was found that the items over the drinking water quality standards were 24 items and all of the mean concentration of water quality items were under the drinking water quality standard except Fe and Mn in 1997. The mean concentration of Fe was $1.31mg/{\ell}$ over the water quality at Daedeog-Gu and that of Mn was $0.53mg/{\ell}$ at Jung-Gu. The concentrations of $NH_3$-N, Mn, Fe, Al and F were increased rapidly in 1997, so that the cause of increasing also must be examined closely. It was found that the rainfall and unfit ratio(unfit frequency/test frequency) of E-coli and bacteria had the hydrologic persistance. The coefficient of correlation between them was 0.525. On the rainfall over 100mm, it was 0.673 and on the rainfall over 150mm, it was 0.641. The correlation between E-coli and rainfall was higher than that between bacteria and rainfall.

  • PDF

Stochastic Properties of Water Quality Variation in Downstream Part of Han River (한강 하류부의 수질변동에 대한 추계학적 특성(I) - 특히 뚝도 및 노량진 지점의 DO, 탁도, 수온의 변동을 중심으로 -)

  • 이홍근
    • Water for future
    • /
    • v.15 no.3
    • /
    • pp.23-36
    • /
    • 1982
  • The stochastic variations and structures of time series data on water quality were examined by employing the techniques of autocorrelation function, variance spectrum, Fourier series, autoregressive model and ARIMA model. These time series included hourly and daily observation on DO, turbidity, conductivity pH and water temperature. The measurement was made by automatic recording instrument at Noryangjin and Dook-do located in the downstream part of Han River during 1975 and 1976. Hourly water quality time series varied with the dominant 24-hour periodicity, and the 12-hour periodicity was also observed. An important factor affecting 24-hour periodic variation of DO is believed to be photosynthesis by algae. These phenomena might be attributable to periodic discharges of municipal sewage. Noryangjin site showed the more distinct 12-hour periodicity than Dook-do site did, and tidal effect might be responsible for the difference. The water quality, as measured by DO and turbidity, was better in the afternoon compared with the quality in the morning. This change can be explained by the periodic variation of DO, temperature and the amount of municipal wewage discharge. It was also observed that the water temperature at Noryangjin was higher than the temperature at Dook-do. This difference might have been caused by the pollutants that were added to the section between two sites. The correlation coefficients between some of the variables were fairly high. For example, the coefficient was -0.88 between DO and water temperature, 0.75 between turbidity and river flow, and 0.957 between water temperature and air temperature. The lag time of heat transfer from the air to the water was estimated as 24 days. The first order auto-regressive model was appropriate for explaning standardized hourly DO time series. The ARIMA model of (1, 0, 0) type provided relatively satisfactory results for daily DO time series after the removal of significant harmonic value.

  • PDF

Water Pollution Source Tracing Using FDC and Correlation Analysis in Geumho River Basin (FDC 및 상관관계 분석을 이용한 금호강 유역에서의 오염원추적)

  • Park, Kyung Ok;Lee, Chang Hee;Cha, Il Geun
    • Journal of Wetlands Research
    • /
    • v.18 no.3
    • /
    • pp.232-243
    • /
    • 2016
  • In order to establish the watershed water quality management strategy of Total Maximum Daily Load(TMDL), it is necessary to understand the relationship between water quality component impacts, and to identify the impacts on downstream target point of watershed water quality management of waste treatment plant(WTP) discharge and upstream/tributary loads. In this study, we determined the impacts between the water quality contaminants, and traced water pollution sources using monitoring data of ministry of environment in tributaries and main stream and WTP monitoring data. Test area is set to Geumho river basin which has characteristics of urban and rural area and composes of GeumhoA, GeumhoB, GeumhoC watershed units in TMDL. The clustering with five grades of discharge data and the correlation analysis were performed through the FDC(Flow duration curve) analysis, which more clearly identified the points and water contaminants deteriorating target water quality of downstream point. This can be used as a tool for tracing pollutants with FDC analysis, and will help us establish the watershed water quality management strategy for TMDL target point in watershed more effectively.