• 제목/요약/키워드: Correction methods

Search Result 2,011, Processing Time 0.029 seconds

Exponentially Fitted Error Correction Methods for Solving Initial Value Problems

  • Kim, Sang-Dong;Kim, Phil-Su
    • Kyungpook Mathematical Journal
    • /
    • v.52 no.2
    • /
    • pp.167-177
    • /
    • 2012
  • In this article, we propose exponentially fitted error correction methods(EECM) which originate from the error correction methods recently developed by the authors (see [10, 11] for examples) for solving nonlinear stiff initial value problems. We reduce the computational cost of the error correction method by making a local approximation of exponential type. This exponential local approximation yields an EECM that is exponentially fitted, A-stable and L-stable, independent of the approximation scheme for the error correction. In particular, the classical explicit Runge-Kutta method for the error correction not only saves the computational cost that the error correction method requires but also gives the same convergence order as the error correction method does. Numerical evidence is provided to support the theoretical results.

Impact of Diverse Configuration in Multivariate Bias Correction Methods on Large-Scale Climate Variable Simulations under Climate Change

  • de Padua, Victor Mikael N.;Ahn Kuk-Hyun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.161-161
    • /
    • 2023
  • Bias correction of values is a necessary step in downscaling coarse and systematically biased global climate models for use in local climate change impact studies. In addition to univariate bias correction methods, many multivariate methods which correct multiple variables jointly - each with their own mathematical designs - have been developed recently. While some literature have focused on the inter-comparison of these multivariate bias correction methods, none have focused extensively on the effect of diverse configurations (i.e., different combinations of input variables to be corrected) of climate variables, particularly high-dimensional ones, on the ability of the different methods to remove biases in uni- and multivariate statistics. This study evaluates the impact of three configurations (inter-variable, inter-spatial, and full dimensional dependence configurations) on four state-of-the-art multivariate bias correction methods in a national-scale domain over South Korea using a gridded approach. An inter-comparison framework evaluating the performance of the different combinations of configurations and bias correction methods in adjusting various climate variable statistics was created. Precipitation, maximum, and minimum temperatures were corrected across 306 high-resolution (0.2°) grid cells and were evaluated. Results show improvements in most methods in correcting various statistics when implementing high-dimensional configurations. However, some instabilities were observed, likely tied to the mathematical designs of the methods, informing that some multivariate bias correction methods are incompatible with high-dimensional configurations highlighting the potential for further improvements in the field, as well as the importance of proper selection of the correction method specific to the needs of the user.

  • PDF

Comparison of Drift Reduction Methods for Pedestrian Dead Reckoning Based on a Shoe-Mounted IMU

  • Jung, Woo Chang;Lee, Jung Keun
    • Journal of Sensor Science and Technology
    • /
    • v.28 no.6
    • /
    • pp.345-354
    • /
    • 2019
  • The 3D position of pedestrians is a physical quantity used in various fields, such as automotive navigation and augmented reality. An inertial navigation system (INS) based pedestrian dead reckoning (PDR), hereafter INS-PDR, estimates the relative position of pedestrians using an inertial measurement unit (IMU). Since an INS-PDR integrates the accelerometer signal twice, cumulative errors occur and cause a rapid increase in drifts. Various correction methods have been proposed to reduce drifts. For example, one of the most commonly applied correction method is the zero velocity update (ZUPT). This study investigated the characteristics of the existing INS-PDR methods based on shoe-mounted IMU and compared the estimation performances under various conditions. Four methods were chosen: (i) altitude correction (AC); (ii) step length correction (SLC); (iii) advanced heuristic drift elimination (AHDE); and (iv) magnetometer-based heading correction (MHC). Experimental results reveal that each of the correction methods shows condition-sensitive performance, that is, each method performs better under the test conditions for which the method was developed than it does under other conditions. Nevertheless, AC and AHDE performed better than the SLC and MHC overall. The AC and AHDE methods were complementary to each other, and a combination of the two methods yields better estimation performance.

Extending Ionospheric Correction Coverage Area by using Extrapolation Methods (외삽기법을 이용한 전리층 보정정보 영역 확장)

  • Kim, Jeongrae;Kim, Mingyu
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.22 no.3
    • /
    • pp.74-81
    • /
    • 2014
  • The coverage area of GNSS regional ionospheric correction model is mainly determined by the disribution of GNSS ground monitoring stations. Outside the coverage area, GNSS users may receive ionospheric correction signals but the correction does not contain valid correction information. Extrapolation of the correction information can extend the coverage area to some extent. Three interpolation methods, Kriging, biharmonic spline and cubic spline, are tested to evaluate the extrapolation accuracy of the ionospheric delay corrections outside the correction coverage area. IGS (International GNSS Service) ionosphere map data is used to simulate the corrections and to compute the extrapolation error statistics. Among the three methods, biharmonic method yields the best accuracy. The estimation error has a high value during Spring and Fall. The error has a high value in South and East sides and has a low value in North side.

Uncertainty in Regional Climate Change Impact Assessment using Bias-Correction Technique for Future Climate Scenarios (미래 기상 시나리오에 대한 편의 보정 방법에 따른 지역 기후변화 영향 평가의 불확실성)

  • Hwang, Syewoon;Her, Young Gu;Chang, Seungwoo
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.55 no.4
    • /
    • pp.95-106
    • /
    • 2013
  • It is now generally known that dynamical climate modeling outputs include systematic biases in reproducing the properties of atmospheric variables such as, preciptation and temerature. There is thus, general consensus among the researchers about the need of bias-correction process prior to using climate model results especially for hydrologic applications. Among the number of bias-correction methods, distribution (e.g., cumulative distribution fuction, CDF) mapping based approach has been evaluated as one of the skillful techniques. This study investigates the uncertainty of using various CDF mapping-based methods for bias-correciton in assessing regional climate change Impacts. Two different dynamicailly-downscaled Global Circulation Model results (CCSM and GFDL under ARES4 A2 scenario) using Regional Spectial Model for retrospective peiod (1969-2000) and future period (2039-2069) were collected over the west central Florida. Total 12 possible methods (i.e., 3 for developing distribution by each of 4 for estimating biases in future projections) were examined and the variations among the results using different methods were evaluated in various ways. The results for daily temperature showed that while mean and standard deviation of Tmax and Tmin has relatively small variation among the bias-correction methods, monthly maximum values showed as significant variation (~2'C) as the mean differences between the retrospective simulations and future projections. The accuracy of raw preciptiation predictions was much worse than temerature and bias-corrected results appreared to be more significantly influenced by the methodologies. Furthermore the uncertainty of bias-correction was found to be relevant to the performance of climate model (i.e., CCSM results which showed relatively worse accuracy showed larger variation among the bias-correction methods). Concludingly bias-correction methodology is an important sourse of uncertainty among other processes that may be required for cliamte change impact assessment. This study underscores the need to carefully select a bias-correction method and that the approach for any given analysis should depend on the research question being asked.

The evaluation of correction methods and effect of kaolinite on quantitative analysis of quartz in respirable dust by FTIR direct-on-filter method (직접필터법을 이용한 석영 분석시 고령석의 영향 및 보정방법 평가)

  • Phee, Young Gyu
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.19 no.1
    • /
    • pp.1-7
    • /
    • 2009
  • To establish the Fourier-Transform Infra-Red spectrophotometry(FTIR) Direct-On-Filter(DOF) technique as a useful analytical method for quartz in respirable dust samples, an influence of the kaolinite should be corrected. Respirable dust, created in a dust chamber containing the standard material of quartz and kaolinite were collected using a cyclone equipped with a 25 mm, $0.8\;{\mu}m$ pore size DM filter as a collection medium. This study was designed to compare three methods of correction for kaolinite when quantifying the content of quartz, including the least square, the optimum choice and the spectral subtraction methods. The content of quartz in the respirable dust samples was overestimated by 6.2% when mixed with kaolinite(35.5% by weight). The content of quartz containing kaolinite(72.8% by weight) were overestimated by 32%. The spectral subtraction method underestimated the quartz content by 1.5%, while the other two correction methods, the optimum choice and the least square method, overestimated the quartz content by 1.9% to 6.4% and 0.04 to 1.1%, respectively. The results of this study are suggested that, when correcting for effects of kaolinite on quantitative analysis of quartz in respirable dust by FTIR direct-on-filter method, the least square method produce the most unbiased results be compared with those of other correction methods.

Application of Pressure Correction Method to CFD Work for 8 Centrifugal Compressor Impellers (압력보정법을 이용한 8개의 원심압축기 임펠러 CFD의 적용 연구)

  • Oh, Jongsik;Ro, SooHyuk;Hyun, YongIk
    • 유체기계공업학회:학술대회논문집
    • /
    • 2000.12a
    • /
    • pp.226-235
    • /
    • 2000
  • Two representative finite volume methods, i.e., the time marching method and the pressure correction method, were applied to 8 centrifugal compressor impeller flows, with low to very high level of pressure ratio, among which 7 impellers' experimental performance is given in the open literature. The present study is focused on the prediction differences from both methods, developed by the authors, in the pressure correction method's point of view. In all cases, the time marching method gives a satifactory solution, but the pressure correction method does not. Up to about $18\%$ less level of total-to-total pressure ratio is predicted by the pressure correction method as the level of the impeller pressure ratio increases up to about 10. The drop of total pressure ratio is caused by the underestimation of static pressure rise which seems to be attributed to inappropriate linearization and discretization of the pressure/density coupling terms in the pressure correction equation.

  • PDF

Correction Methods and Validation for Environmental Conditions in the Ice Field Trials (빙해역 시운전 해석을 위한 환경조건 보정 방법 및 검증)

  • Kim, Hyun Soo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.56 no.2
    • /
    • pp.117-127
    • /
    • 2019
  • Vessel's ice speed performances will be verified in ice sea trial but environmental conditions of ice fields are changeable according to the weather condition of ice trial area. Speed performance has to correct in the no wind, wave and current etc. after sea trial. Especially finding ice fields which is exact the same as owner's ice thickness and strength requirements is not easy. Therefore speed correction according to environment condition has to be done after sea trial measurements. Correction methods for ice thickness, ice strength, wave, wind and ship draft, trim, ice drift etc. are checked in ice sea trial based on literature review such as ISO standard, ITTC recommendation, journal papers and proceedings of conferences. Possibility of application for current and ice drift correction in ice field are discussed and measuring schemes and procedures of correction methods are described in this paper. All of correction schemes are calculated for 'Araon' which is ice breaking research vessel with Arctic and Antarctic ice field test results. Analyzed results shows that Araon is satisfied with her official ice speed performance of 3 knots with 10MW power at 1m ice thickness, 570kPa ice flexural strength.

Scale Effect Corrections of NREL Phase VI Wind Turbine by Using Computational Fluid Dynamics (전산유체역학을 이용한 NREL Phase VI 풍력터빈의 축소효과 보정)

  • Park, Young-Min;Chang, Byeong-Hee
    • New & Renewable Energy
    • /
    • v.3 no.3
    • /
    • pp.54-62
    • /
    • 2007
  • The present paper describes the scale effect correction methods for scaled NREL Phase VI wind turbines by using CFD[computational fluid dynamics). For the corrections of wind turbine scale effect, various researches on the helicopter rotor scale effect were investigated and the feasibility study of the methods was performed to correct wind turbine scale effect. The present paper also introduces scale effect correction methods based on two dimensional lift slope. In order to test the present method, performance analyses of NREL Phase VI wind turbines under various scale conditions were carried out and new correction method was applied. Granting that the new correction method is valid only above Reynolds No. 100,000, it showed reasonable agreement between model and full scale wind turbines in the linear torque region.

  • PDF

Mild Ptosis Correction with the Stitch Method During Incisional Double Fold Formation

  • Lee, Edward Ilho;Ahn, Tae Joo
    • Archives of Plastic Surgery
    • /
    • v.41 no.1
    • /
    • pp.71-76
    • /
    • 2014
  • Background Numerous methods exist for simultaneous correction of mild blepharoptosis during double eyelid surgery. These methods are generally categorized into either incisional (open) or non-incisional (suture) methods. The incisional method is commonly used for the creation of the double eyelid crease in patients with excessive or thick skin. However, concurrent open ptosis correction is often marred by the lengthy period of intraoperative adjustment, causing more swelling, a longer recovery time, and an increased risk of postoperative complications. Methods The authors have devised a new, minimally invasive technique to alleviate mild ptosis during incisional double eyelid surgery. The anterior lamella is approached through the incisional technique for the creation of a double eyelid while the posterior lamella, including Muller's and levator muscles, is approached with the suture method for Muller's plication and ptosis correction. Results The procedure described was utilized in 28 patients from June 2012 to August 2012. Postoperative asymmetry was noted in one patient who had severe preoperative conjunctival scarring. Otherwise, ptosis was corrected as planned in the rest of the cases and all of the patients were satisfied with their postoperative appearance and experienced no complications. Conclusions Our hybrid technique combines the benefits of both the incisional and suture methods, allowing for a predictable and easily reproducible correction of blepharoptosis with an aesthetically pleasing double eyelid.