• Title/Summary/Keyword: Correction coefficient method

Search Result 183, Processing Time 0.027 seconds

Belly Sting Model Support Interference Effect of NASA Common Research Model at Low Speed Wind Tunnel (저속 풍동시험 시 NASA Common Research Model의 Belly Sting 모형 지지부에 의한 간섭효과에 관한 연구)

  • Cha, Kyunghwan;Kim, Namgyun;Ko, Sungho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.3
    • /
    • pp.167-174
    • /
    • 2021
  • Computational Fluid Dynamics (CFD) was performed under low-speed wind tunnel test conditions using a 29.7% scale model of the NASA common research model. A wind tunnel test was conducted to measure the aerodynamic coefficient of the CRM with Belly sting model support configuration at a low Reynolds number of 0.3×106 and it was compared with the aerodynamic coefficient of CFD analysis. In order to verify the validation of the analysis, a computational analysis under the conditions of the advance research was performed and compared. The interference effect of the Belly sting model support affected not only the fuselage but also the main and tail wings.

Correction Factors for Outdoor Concentrations of PM2.5 Measured with Portable Real-time Monitors Compared with Gravimetric Methods: Results from South Korea

  • Yun, Dong-Min;Kim, Myeong-Bok;Lee, Jun-Bok;Kim, Bo-Kyeong;Lee, Dong-Jae;Lee, Seon-Yeub;Yu, Sol;Kim, Sung-Roul
    • Journal of Environmental Science International
    • /
    • v.24 no.12
    • /
    • pp.1559-1567
    • /
    • 2015
  • This study investigated the association between $PM_{2.5}$ concentrations obtained with portable real-time monitors and those obtained with gravimetric methods in national urban air-quality monitoring sites in Seoul, South Korea. We used the SidePak AM510 Personal Aerosol Monitor (TSI Inc., 500 Cardigan Road Shoreview, MN) and DustTrak DRX 8533 (TSI Inc., 500 Cardigan Road Shoreview, MN) as portable real-time monitors for measuring $PM_{2.5}$ concentrations and compared these values with those measured with the PMS-103 or SEQ 47/50 models operated by Federal Reference Method (FRM) or the European Committee for Standardization(ECS), respectively, in national urban air-quality monitoring sites in Seoul. Measurements were conducted every other day in the winter and spring seasons of 2014. The estimated daily mean concentrations of $PM_{2.5}$ ranged between 13.4 and $161.9{\mu}g/m^3$ using AM 510 and between 22.0 and $156.0{\mu}g/m^3$ using DustTrak. The Spearman correlation coefficient for $PM_{2.5}$ concentrations between AM 510 and gravimetric results was 0.99, and the correlation between DustTrak and gravimetric results was 0.87. The correction factor suggested was 0.42 and 0.29 for AM 510 and DustTrak, respectively. We found that $PM_{2.5}$ concentrations measured with real-time monitors could overestimate true $PM_{2.5}$ concentrations and therefore the application of a correction factor (0.43) is strongly suggested for quantification when Real-time monitors were operated of $PM_{2.5}$ levels at urban atmospheric environment of South Korea.

Prediction and Determination of Correction Coefficients for Blast Vibration Based on AI (AI 기반의 발파진동 계수 예측 및 보정계수 산정에 관한 연구)

  • Kwang-Ho You;Myung-Kyu Song;Hyun-Koo Lee;Nam-Jung Kim
    • Explosives and Blasting
    • /
    • v.41 no.3
    • /
    • pp.26-37
    • /
    • 2023
  • In order to determine the amount of explosives that can minimize the vibration generated during tunnel construction using the blasting method, it is necessary to derive the blasting vibration coefficients, K and n, by analyzing the vibration records of trial blasting in the field or under similar conditions. In this study, we aimed to develop a technique that can derive reasonable K and n when trial blasting cannot be performed. To this end, we collected full-scale trial blast data and studied how to predict the blast vibration coefficient (K, n) according to the type of explosive, center cut blasting method, rock origin and type, and rock grade using deep learning (DL). In addition, the correction value between full-scale and borehole trial blasting results was calculated to compensate for the limitations of the borehole trial blasting results and to carry out a design that aligns more closely with reality. In this study, when comparing the available explosive amount according to the borehole trial blasting result equation, the predictions from deep learning (DL) exceed 50%, and the result with the correction value is similar to other blast vibration estimation equations or about 20% more, enabling more economical design.

Usefulness Evaluation of Artifacts by Bone Cement of Percutaneous Vertebroplasty Performed Patients and CT Correction Method in Spine SPECT/CT Examinations (척추 뼈 SPECT/CT검사에서 경피적 척추성형술 시행 환자의 골 시멘트로 인한 인공물과 CT보정방법의 유용성 평가)

  • Kim, Ji-Hyeon;Park, Hoon-Hee;Lee, Juyoung;Nam-Kung, Sik;Son, Hyeon-Soo;Park, Sang-Ryoon
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.18 no.1
    • /
    • pp.49-61
    • /
    • 2014
  • Purpose: With the aging of the population, the attack rate of osteoporotic vertebral compression fracture is in the increasing trend, and percutaneous vertebroplasty (PVP) is the most commonly performed standardized treatment. Although there is a research report of the excellence of usefulness of the SPECT/CT examination in terns of the exact diagnosis before and after the procedure, the bone cement material used in the procedure influences the image quality by forming an artifact in the CT image. Therefore, the objective of the research lies on evaluating the effect the bone cement gives to a SPECT/CT image. Materials and Methods: The images were acquired by inserting a model cement to each cylinder, after setting the background (3.6 kBq/mL), hot cylinder (29.6 kBq/mL) and cold cylinder (water) to the NEMA-1994 phantom. It was reconstructed with Astonish (Iterative: 4 Subset: 16), and non attenuation correction (NAC), attenuation correction (AC+SC-) and attenuation and scatter correction (AC+SC+) were used for the CT correction method. The mean count by each correction method and the count change ratio by the existence of the cement material were compared and the contrast recovery coefficient (CRC) was obtained. Additionally, the bone/soft tissue ratio (B/S ratio) was obtained after measuring the mean count of the 4 places including the soft tissue(spine erector muscle) after dividing the vertebral body into fracture region, normal region and cement by selecting the 20 patients those have performed PVP from the 107 patients diagnosed of compression fracture. Results: The mean count by the existence of a cement material showed the rate of increase of 12.4%, 6.5%, 1.5% at the hot cylinder of the phantom by NAC, AC+SC- and AC+SC+ when cement existed, 75.2%, 85.4%, 102.9% at the cold cylinder, 13.6%, 18.2%, 9.1% at the background, 33.1%, 41.4%, 63.5% at the fracture region of the clinical image, 53.1%, 61.6%, 67.7% at the normal region and 10.0%, 4.7%, 3.6% at the soft tissue. Meanwhile, a relative count reduction could be verified at the cement adjacent part at the inside of the cylinder, and the phantom image on the lesion and the count increase ratio of the clinical image showed a contrary phase. CRC implying the contrast ratio and B/S ratio was improved in the order of NAC, AC+SC-, AC+SC+, and was constant without a big change in the cold cylinder of the phantom. AC+SC- for the quantitative count, and AC+SC+ for the contrast ratio was analyzed to be the highest. Conclusion: It is considered to be useful in a clinical diagnosis if the application of AC+SC+ that improves the contrast ratio is combined, as it increases the noise count of the soft tissue and the scatter region as well along with the effect of the bone cement in contrast to the fact that the use of AC+SC- in the spine SPECT/CT examination of a PVP performed patient drastically increases the image count and enables a high density of image of the lesion(fracture).

  • PDF

Comparison of the Correction Methods for Gamma Ray Attenuation in the Radioactive Waste Drum Assay (방사성폐기물드럼 핵종분석에서 감마선 감쇠보정 방법들의 비교 평가)

  • Ji Young-Yong;Ryu Young-Gerl;Kwak Kyoung-Kil;Kang Duck-Won;Kim Ki-Hong
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.4 no.3
    • /
    • pp.275-284
    • /
    • 2006
  • In the measurement of gamma rays emitted from the nuclide in the radioactive waste drum, to analyze the nuclide concentration accurately, it is necessary to use the proper calibration standards and to correct for the attenuation of the gamma rays. Two drums having a different density were used to analyze the nuclide concentration inside the drum in this study. After carrying out the system calibration, we measured the gamma rays emitted from the standard source inside the model drum with changing the distance between the drum and the detector. The measured values were corrected with the three kinds of gamma attenuation correction methode, as a results, the error was less than 10 % in the low density drum and less than 25 % in the high density drum. The measured activity in the short distance was more accruable than in the long distance. The transmission correction for the mass attenuation showed good results(very Low error) compared to the mean density and the differential peak correction method.

  • PDF

Sound Propagation through the Diesel Particulate Filter (DPF) (디젤 매연여과기 (DPF) 내에서의 음향전파)

  • Choi, Won-Yong;Ih, Jeong-Guan
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11b
    • /
    • pp.152-155
    • /
    • 2005
  • Diesel particulate filter (DPF) is comprised of a number of capillary tubes enclosed by porous ceramic wails, shaped like a plugged duct. Hot gas flows through the DPF along with the exhaust noise from Diesel engine. Based on previous works on the sound propagation through DPF, in this study, losses at entrance, exit, and ceramic walls are considered and the gradients in temperature and flow velocity are considered. Transfer matrix at entrance, monolith, and exit parts are obtained by employing the segmental approach in analyzing the sound propagation through DPF. The predicted transmission loss agrees very well with the empirical one, which is measured by the improved method with correction terms.

  • PDF

Evaluation of MODIS Gross Primary Production (GPP) by Comparing with GPP from CO2 Flux Data Measured in a Mixed Forest Area (설마천 유역 CO2 Flux 실측 자료에 의한 총일차생산성 (GPP)과 MODIS GPP간의 비교 평가)

  • Jung, Chung-Gill;Shin, Hyung-Jin;Park, Min-Ji;Joh, Hyung-Kyung;Kim, Seong-Joon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.53 no.2
    • /
    • pp.1-8
    • /
    • 2011
  • In this study, In order to evaluate reliable of MODIS GPP, the MODIS GPP and Flux tower measured GPP were compared to evaluate the use of method on 8 days composite MODIS GPP. The 2008 Flux data ($CO_2$ Flux and air temperature) measured in Seolmacheon watershed ($8.48\;km^2$) were used. The Flux tower GPP was estimated as the sum of $CO_2$ Flux and $R_{ec}$ (ecosystem respiration) by Lloyd and Taylor method (1994). The summer Monsoon period from June to August mostly contributed the underestimation of MODIS GPP by cloud contamination on MODIS pixels. The 2008 MODIS GPP and Flux tower GPP of the watershed were $1133.2\;g/m^2/year$ and $1464.3\;g/m^2/year$ respectively and the determination coefficient ($R^2$) after correction of cloud-originated errors was 0.74 (0.63 before correction). Even though effect of Cloud-Originated Errors was eliminated, Solar radiation and Temperature are affected at GPP. Measurement of correct GPP is difficult. But, If errors of MODIS GPP analyze on Cloud Moonsoon Climate in korea and eliminated effect of Cloud-Originated Errors, MODIS GPP will be considered GPP increasing of 9 %. There, Our results indicate that MODIS GPP show reliable and useful data except for summer period in Moonsoon Climate.

A Study on the Size Evaluation of Circular Flat Flaw with Indication by Straight Beam Inspection of Ultrasonic Wave (초음파(超音波)의 수직탐상법(垂直探傷法)에 의한 경사(傾斜)를 갖는 원형평면결함(圓形平面缺陷)의 크기 평가(評價)에 관한 연구(硏究))

  • Han, Eung-Kyo;Kim, Ki-Joong;Lee, Kook-Hwan
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.4 no.1
    • /
    • pp.11-22
    • /
    • 1984
  • In the straight beam inspection of ultrasonic wave, the method for evaluating flaw size by AVG diagram is useful as a method for the quantitative evaluation of results of ultrasonic flaw detection. This study was carried out the measure the size of circular flat flaw with the inclination by straight beam inspection and could be decreased the error of application due to the inclination of flaw by AVG diagram in consideration of correction coefficient. From the result of the experiment, the error by means of the application of experimental values to AVG diagram was increased as the inclination angle grows. Also, it n s increased the error of application as the detecting frequency and diameter of flaw grows in the same inclination angle. In case of diameter of flaw 6mm, AVG diagram could be applied to the inclination angle $3^{\circ}$ for 5 MHz, $7^{\circ}$ for 2.25 MHz, $15^{\circ}C$ for 1 MHz in the range of 20% error and the theory was concided with the experiment to $5^{\circ}C$ for 5 MHz, $10^{\circ}C$ for 2.25 MHz, $15^{\circ}C$ for 1 MHz in the range of 10% error by correction eq. (45) due to the inclination angle. Therefore, it is considered that the results obtained from this study will be somewhat helpful informations for the size evaluation of circular flat flaw with the inclination.

  • PDF

A System for Thermal Distortion Analysis of Hull Structures by Solar Radiation (선체의 태양복사 열변형 해석을 위한 전처리시스템)

  • Ha, Yunsok;Lee, Donghoon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.53 no.4
    • /
    • pp.275-281
    • /
    • 2016
  • One of the most important things for quality to meet ship-production schedule is an accuracy control. A ship is assembled by welding through whole production process, so it is important that loss by correction will not happen as much as possible by using some engineering skills like reverse design, reverse setting and margin for thermal shrinkage. These efforts are a quite effective in fabrication stages, but not in erection stages. If a ship block which consists of common steel is exposed to directional solar radiation, its dimensional accuracy will change high as time by its thermal expansion coefficient. Therefore, the measuring work would be often done at dawn or evening even with having a very accurate device. In this study, an FE analysis method is developed to solve this problem. It can change measured data affected by solar thermal distortion to ones not, even though ship-block is measured at an arbitrary time. It will use the time when measuring, the direction of block and the weather record by satellites. It is confirmed by a comparison between measured data of a ship-block and the result by suggested analysis method. Furthermore, a pre-processing system is also developed for fast application of the suggested analysis method.

Left Ventricular Volume Measurement by Count Method with Attenuation Correction in Gated Blood Pool scan (심장풀스캔에서 방사능 계측법에 의한 좌심실 용적의 측정 -조직 감쇄의 보정에 의한 연구-)

  • Bom, Hee-Seung;Chung, June-Key;Lee, Myung-Chul;Cho, Bo-Youn;Koh, Chang-Soon;Kim, Ji-Yeul
    • The Korean Journal of Nuclear Medicine
    • /
    • v.21 no.1
    • /
    • pp.33-37
    • /
    • 1987
  • Attenuated end-diastolic and end-systolic left ventricular counts which obtained from cardiac gated blood pool scan were corrected using experimentally calculated attenuation coefficient $(\mu=0.13/cm)$ and depth of center of left ventricle. This method was confirmed to be correct experimentally using phantom balloon. To compare the accuracy of attenuated and attenuation-corrected left ventricular volume measurement, authors studied 10 patients with ischemic heart disease who underwent both gated blood pool scan and X-ray contrast ventriculography within a week. The attenuated and attenuation-corrected left ventricular volume measured by count method correlated with contrast ventriculographic volumes; however, attenuation corrected measurement was correlated more closely.

  • PDF