• Title/Summary/Keyword: Correction Image

Search Result 1,221, Processing Time 0.293 seconds

The difference of image quality using other radioactive isotope in uniformity correction map of myocardial perfusion SPECT (심근 관류 SPECT에서 핵종에 따른 Uniformity correction map 설정을 통한 영상의 질 비교)

  • Song, Jae hyuk;Kim, Kyeong Sik;Lee, Dong Hoon;Kim, Sung Hwan;Park, Jang Won
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.19 no.2
    • /
    • pp.87-92
    • /
    • 2015
  • Purpose When the patients takes myocardial perfusion SPECT using $^{201}Tl$, the operator gives the patients an injection of $^{201}Tl$. But the uniformity correction map in SPECT uses $^{99m}Tc$ uniformity correction map. Thus, we want to compare the image quality when it uses $^{99m}Tc$ uniformity correction map and when it uses $^{201}Tl$ uniformity correction map. Materials and Methods Phantom study is performed. We take the data by Asan medical center daily QC condition with flood phantom including $^{201}Tl$ 21.3 kBq/mL. After postprocessing with this data, we analyze CFOV integral uniformity(I.U) and differential uniformity(D.U). And we take the data with Jaszczak ECT Phantom by American college of radiology accreditation program instruction including $^{201}Tl$ 33.4 kBq/mL. After post processing with this data, we analyze spatial Resolution, Integral Uniformity(I.U), coefficient of variation(C.V) and Contrast with Interactive data language program. Results In the flood phantom test, when it uses $^{99m}Tc$ uniformity correction map, Flood I.U is 3.6% and D.U is 3.0%. When it uses $^{201}Tl$ uniformity correction map, Flood I.U is 3.8% and D.U is 2.1%. The flood I.U is worsen about 5%, but the D.U is improved about 30% inversely. In the Jaszczak ECT phantom test, when it uses $^{99m}Tc$ uniformity correction map, SPECT I.U, C.V and contrast is 13.99%, 4.89% and 0.69. When it uses $^{201}Tl$ uniformity correction map, SPECT I.U, C.V and contrast is 11.37%, 4.79% and 0.78. All of data are improved about 18%, 2%, 13% The spatial resolution was no significant changes. Conclusion In the flood phantom test, Flood I.U is worsen but Flood D.U is improved. Therefore, it's uncertain that an image quality is improved with flood phantom test. On the other hand, SPECT I.U, C.V, Contrast are improved about 18%, 2%, 13% in the Jaszczak ECT phantom test. This study has limitations that we can't take all variables into account and study with two phantoms. We need think about things that it has a good effect when doctors decipher the nuclear medicine image and it's possible to improve the image quality using the uniformity correction map of other radionuclides other than $^{99m}Tc$, $^{201}Tl$ when we make other nuclear medicine examinations.

  • PDF

FPGA Design and Realization for Scanning Image Enhancement using LUT Shading Correction Algorithm (LUT 쉐이딩 보정 알고리듬을 이용한 스캐닝 이미지 향상 FPGA 설계 구현)

  • Kim, Young-Bin;Ryu, Conan K.R.
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.8
    • /
    • pp.1759-1764
    • /
    • 2012
  • This paper describes FPGA design and realization using the shading correction algorithm for a CCD scan image enhancement. The shading algorithm is used by LUT (Look-up Table). The image enhancement results from that the histogram minimum value and maximum with respect to all pixels of the CCD image should be extracted, and the shading LUT is constructed to keep constant histogram with offset data. The output of sensor be converted to corrected LUT image in preprocessing, and the converting system is realized by FPGA to be enabled to operate in real time. The result of the experimentation for the proposed system is showed to take the scanning time 2.4ms below. The system is presented to be based on a low speed processor system to scan enhanced images in real time and be guaranteed to be low cost.

DESIGN OF CAMERA CONTROLLER FOR HIGH RESOLUTION SPACE-BORN CAMERA SYSTEM

  • Heo, Haeng-Pal;Kong, Jong-Pil;Kim, Young-Sun;Park, Jong-Euk;Yong, Sang-Soon
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.130-133
    • /
    • 2007
  • In order to get high quality and high resolution image data from the space-borne camera system, the image chain from the sensor to the user in the ground-station need to be designed and controlled with extreme care. The behavior of the camera system needs to be controlled by ground commands to support on-orbit calibration and to adjust imaging parameters and to perform early stage on-orbit image correction, like gain and offset control, non-uniformity correction, etc. The operation status including the temperature of the sensor needs to be transferred to the ground-station. The preparation time of the camera system for imaging with specific parameters should be minimized. The camera controller needs to synchronize the operation of cameras for every channel and for every spectral band. Detail timing information of the image data needs to be provided for image data correction at ground-station. In this paper, the design of the camera controller for the AEISS on KOMPSAT-3 will be introduced. It will be described how the image chain is controlled and which imaging parameters are to be adjusted The camera controller will have software for the flexible operation of the camera by the ground-station operators and it can be reconfigured by ground commands. A simple concept of the camera operations and the design of the camera controller, not only with hardware but also with controller software are to be introduced in this paper.

  • PDF

Calibration System Development for Multi-Image (다면 영상을 위한 캘리브레이션 시스템 개발)

  • Han, Jung-Soo;Kim, Gui-Jung
    • Journal of Digital Convergence
    • /
    • v.14 no.8
    • /
    • pp.305-311
    • /
    • 2016
  • If the automated image calibration system is performed in the position of non-experts, an expert will be required in every case inefficiently. But this requires an expert only when absolutely necessary. As well as the rapid system operation and efficient workforce can be managed. Image correction to perform projector inspection and management skills and to filter SW plug-in correction is that special theater system maintenance is not only managed efficiently, but also combined image analysis techniques can improve the technical perfection. This paper is to minimize the economic loss by developing a 10-bit High-depth and high-resolution $360^{\circ}$ projection image analysis technique and is to development of the special theater calibration system to effectively support quality.

A Study on the Effect of Image Resampling in Land Cover Classification (토지피복분류에 있어서 이미지재배열의 영향에 관한 연구)

  • Yang, In-Tae;Kim, Yeon-Jun
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.1 no.1 s.1
    • /
    • pp.181-192
    • /
    • 1993
  • Image is composed of the digital numbers including information on natural phenomena, their condition and the kind of objects. Digital numbers change in geometric correction(that is preprocessing). This change of digital numbers gave an effect on results of land-cover classification. We intend to know the influence of resampling as classifying land-cover using the image reconstructed by geometric correction in this paper. Chun-cheon basin was selected the study area having most variable land-cover pattern in North-Han river valley and made on use of RESTEC data resampled in preprocessing. Land-cover is classified as six classes of LEVEL I using maximum likelyhood classification method. We classified land-cover using the image resampled by two methods in this study. Bilinear interpolation method was most accurate in five classes except bear-land in the result of comparing each class with topographic map. We should choose the method of resampling according to the class in which we put the importance in the image resampling of geometric correction. And if we use four-season's image, we may classify more accurately in case of the confusion in case of the confusion in borders of rice field and farm.

  • PDF

Simulation of Lens Aberration Correction for Polygon Mirror Scanning (PMS) (Polygon Mirror Scanning (OMS)을 위한 렌즈의 구면 수차 보정 시뮬레이션)

  • 신승연
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 1999.08a
    • /
    • pp.128-129
    • /
    • 1999
  • Polygon Mirror Scanning(PMS) is composed of LED array, magnifying lens, polygon mirror and motor. It is important to correct the lens aberrations to gain the image we want to show. In this paper, we have simulated the lens aberration correction to reduce the spherical aberration . We have obtained a aspherical lens which is corrected the spherical aberration.

  • PDF

Enhanced Urban Information Recognition through Correction of Shadow Effects (그림자효과 보정을 통한 향상된 도시정보 인식)

  • 손홍규;윤공현;박효근
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2003.04a
    • /
    • pp.187-190
    • /
    • 2003
  • Due to complexity of diverse features in urban area, accurate feature extraction is laborious task in aerial and satellite imagery. Especially occlusion by buildings, and image distortion of shadow effects make processing more difficult work. In this study, algorithm was presented to correct of shadow effects in aerial color images. This algorithm enables user to accurately interpretate urban information by correction of shadow effects in aerial color images

  • PDF

Technical Review of ERS and RADARSAT SAR CEOS Format for Geocoding and Terrain Correction Applications

  • Kim, Man-Jo;Ka, Min-Ho
    • Korean Journal of Remote Sensing
    • /
    • v.16 no.2
    • /
    • pp.189-198
    • /
    • 2000
  • This study introduces the CEOS (Committee for Earth Obseuing Satellites) standard format structure that is applicable to image formats of Earth observation systems, and describes several important parameters for post-process applications, especially in precise SAR geocoding and terrain correction application. ERS and RADARSAT were chosen as a representative case and the meaning and usage of various fields in LEADER file were investigated in detail from the viewpoint of SAR geocoding and terrain correction applications.

A study of correction dependent on process parameters for printing on 3D surface (3 차원 곡면에 정밀 인쇄를 위한 공정 변수에 따른 이미지 보정에 관한 연구)

  • Song M.S.;Kim H.C.;Lee S.H.;Yang D.Y.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.749-752
    • /
    • 2005
  • In the industry, three-dimensional coloring has been needed for realistic prototype from rapid prototyping. Z-corporation developed a 3D printer which provides three-dimensional colored prototype. However, the existing process cannot be adopted to models from other rapid prototyping process. In addition, time and cost for manufacturing colored prototype still remain to be improved. In this study, a new coloring process using ink-jet head is proposed for color printing on three-dimensional prototype surface. Process parameters such as the angle and the distance between ink-jet nozzle and the three-dimensional surface should be investigated from experiments. The correction matrix according to sloped angle to minimize the distortion of 2D image was proposed by analysis of printing error. Therefore, approximated method for angle and discrete length according to the radius of curvature for printing on the curved surface was proposed. By printing image on the doubly curved surface, the method was verified. As a practical example, helmet was chosen for printing images on the curved surface. The character images were applied with approximated method for angle and discrete length and was printed on the helmet surface.

  • PDF

A Study on Geometric Correction Method for RADARSAT-1 SAR Satellite Images Acquired by Same Satellite Orbit (동일궤도 다중 RADARSAT-1 SAR 위성영상의 기하보정방법에 관한 연구)

  • Song, Yeong-Sun
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.28 no.6
    • /
    • pp.605-612
    • /
    • 2010
  • Numberous satellites have monitored the Earth in order to detect changes in a large area. These satellites provide orbit information such as ephemeris data, RPC coefficients and etc. besides image data. If we can use such orbit data afforded by satellite, we can reduce the number of control point for geo-referencing. This paper shows the efficient geometric correction method of strip-satellite RADARSAT-l SAR images acquired by same orbit using ephemeris data, single control point and virtual control points. For accuracy analysis of proposed method, this paper compared the image geometrically corrected by the proposed method to the image corrected by ERDAS Imagine.