• Title/Summary/Keyword: Correction Algorithm

Search Result 1,157, Processing Time 0.029 seconds

The Design of Error Detection Auto Correction for Conversion of Graphics to DTV Signal

  • Ryoo-Dongwan;Lee, Jeonwoo
    • Proceedings of the IEEK Conference
    • /
    • 2002.07a
    • /
    • pp.106-109
    • /
    • 2002
  • In the integrated systems, that is integrated digital TV(DTV) internet and home automation, like home server, is needed integration of digital TV video signal and computer graphic signal. The graphic signal is operating at the high speed and has time-divide-stream. So the re-request of data is not easy at the time of error detection. therefore EDAC algorithm is efficient. This paper presents the efficiency error detection auto correction(EDAC) for conversion of graphics signal to DTV video signal. A presented EDAC algorithms use the modified Hamming code for enhancing video quality and reliability. A EDAC algorithm of this paper can detect single error, double error, triple error and more error for preventing from incorrect correction. And it is not necessary an additional memory. In this paper The comparison between digital TV video signal and graphic signal, a EBAC algorithm and a design of conversion graphic signal to DTV signal with EDAC function is described.

  • PDF

Shading Correction Algorithm and CMOS Image Sensing System Design (쉐이딩 보정 알고리즘과 CMOS 이미지 센싱 시스템 설계)

  • Kim, Young Bin;Ryu, Conan K.R.
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.10a
    • /
    • pp.1003-1006
    • /
    • 2012
  • The image correction algorithm and system design for CMOS sensor to enhance the image resolution is presented in this paper. The proposed algorithm finds out the image cell from the sensor and process them by the limited memory configuration. The evaluation of the method is done by the designed hardware system. The experimental results are capable of improving contrast per channel and of sensing equalized image quality on an edge of image.

  • PDF

Realization for Image Distortion Correction Processing System with Fisheye Lens Camera

  • Kim, Ja-Hwan;Ryu, Kwang-Ryol;Sclabassi, Robert J.
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.10a
    • /
    • pp.281-284
    • /
    • 2007
  • A realization for image distortion correction processing system with DSP processor is presented in this paper. The image distortion correcting algorithm is realized by DSP processor for focusing on more real time processing than image quality. The lens and camera distortion coefficients are processed by YCbCr Lookup Tables and the correcting algorithm is applied to reverse mapping method for geometrical transform. The system experimentation results in the processing time about 34.6 msec on $720{\times}480$ curved image at 150 degree visual range.

  • PDF

Development of position correction system of door mounting robot based on point measure: Part I-Algorithm (특정점 측정에 근거한 도어 장착 로봇의 위치 보정 시스템 개발: Part I-보정 알고리즘)

  • Kim, Mi Kyung;Kang, Hee Jun;Kim, Sang Myung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.3
    • /
    • pp.34-41
    • /
    • 1996
  • This work deals with finding a suitable position correction algorithm of industrial robot based on measuring particular points, which calculates two dimensional correction quantities and the must allow visually acceptable door-chassis assembly task. Three optimizing algorithms corresponding to three differ- ent error based performance indices are compared and selected to the best one, in terms of the predefined total uniformity, line uniformity and computational time. The selected algorithm(Total Error Minimization) is implemented for a simple door-chassis model to show its effectiveness.

  • PDF

Turbid water atmospheric correction for GOCI: Modification of MUMM algorithm (GOCI영상의 탁한 해역 대기보정: MUMM 알고리즘 개선)

  • Lee, Boram;Ahn, Jae Hyun;Park, Young-Je;Kim, Sang-Wan
    • Korean Journal of Remote Sensing
    • /
    • v.29 no.2
    • /
    • pp.173-182
    • /
    • 2013
  • The early Sea-viewing Wide Field-of-view Sensor(SeaWiFS) atmospheric correction algorithm which is the basis of the atmospheric correction algorithm for Geostationary Ocean Color Imager(GOCI) assumes that water-leaving radiances is negligible at near-infrared(NIR) wavelengths. For this reason, all of the satellite measured radiances at the NIR wavelengths are assigned to aerosol radiances. However that assumption would cause underestimation of water-leaving radiances if it were applied to turbid Case-2 waters. To overcome this problem, Management Unit of the North Sea Mathematical Models(MUMM) atmospheric correction algorithm has been developed for turbid waters. This MUMM algorithm introduces new parameter ${\alpha}$, representing the ratio of water-leaving reflectance at the NIR wavelengths. ${\alpha}$ is calculated by statistical method and is assumed to be constant throughout the study area. Using this algorithm, we can obtain comparatively accurate water-leaving radiances in the moderately turbid waters where the NIR water-leaving reflectance is less than approximately 0.01. However, this algorithm still underestimates the water-leaving radiances at the extremely turbid water since the ratio of water-leaving radiance at two NIR wavelengths, ${\alpha}$ is changed with concentration of suspended particles. In this study, we modified the MUMM algorithm to calculate appropriate value for ${\alpha}$ using an iterative technique. As a result, the accuracy of water-leaving reflectance has been significantly improved. Specifically, the results show that the Root Mean Square Error(RMSE) of the modified MUMM algorithm was 0.002 while that of the MUMM algorithm was 0.0048.

Dehazing in HSI Color Space with Color Correction (HSI 색 공간 색상 보정을 이용한 안개 제거 알고리즘)

  • Um, Taeha;Kim, Wonha
    • Journal of Broadcast Engineering
    • /
    • v.18 no.2
    • /
    • pp.140-148
    • /
    • 2013
  • The haze removal algorithm using median dark channel prior is an efficient and fast method with relatively accurate transmission estimation. However, conventional methods may produce color distortion since the method ignores the color mismatch between estimated airlight and actual airlight. In this paper, we propose a color correction with measuring color fidelity in the HSI color space. Experimental results show that the proposed algorithm gives better color correction scheme.

Features of Yellow Sand in SeaWiFS Data and Their Implication for Atmospheric Correction

  • Sohn, Byung-Ju;Hwang, Seok-Gyu
    • Proceedings of the KSRS Conference
    • /
    • 1998.09a
    • /
    • pp.404-408
    • /
    • 1998
  • Yellow sand event has been studied using SeaWiFS data in order to examine the aerosol optical characteristics in the Yellow Sea and their influences on the atmospheric correction for the ocean color remote sensing. Two SeaWiFS images of April 18 and April 25, 1998, representing Yellow Sand event and clear-sky case respectively, are selected for emphasizing the impact of high aerosol concentration on the ocean color remote sensing. It was shown that NASA's standard atmospheric correction algorithm treats yellow sand area as either too high radiance or cloud area, in which ocean color information is not generated. SeaWiFS aerosol optical thickness is compared with nearby ground-based sun photometer measurements and also is compared with radiative transfer simulation in conjunction with yellow sand model, examining the performance of NASA's atmospheric correction algorithm in case of the heavy dust event.

  • PDF

Study on an algorithm for atmospheric correction of Landsat TM imagery using MODTRAN simulation

  • Oh, Sung-Nam;Yu, Sung-Yeol;Lee, Hyun-Kyung;Kim, Yong-Sup;Park, Kyung-Won
    • Proceedings of the KSRS Conference
    • /
    • 1998.09a
    • /
    • pp.103-109
    • /
    • 1998
  • A technique on atmospheric correction algorithm for a single band (0.76-0.90 $\mu$m) reflective of Landsat TM imagery has been developed using a radiation transfer model simulation. It proceeds in two steps: First, calculation of the surface reflectance of each pixel based on precomputed planetary albedo functions for actual atmospheres(e. g. radiosonde) and two kinds of atmospheric visibility states. Second, approximate correction of the adjacency pixel effect by taking into account the average reflectance in an 7 $\times$ 7 pixel neighbourhood and using appropriate land cover classification in reflectance. The correction functions are provided by MODTRAN model.

  • PDF

Development of position correction system of door mounting robot based on point measure: Part ll-Measurement and implementation (특정점 측정에 근거한 도어 장착 로봇의 위치 보정 시스템 개발: Part II - 측정및 구현)

  • Byun, Sung Dong;Kang, Hee Jun;Kim, Sang Myung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.3
    • /
    • pp.42-48
    • /
    • 1996
  • In this paper, a position correction system of industrial robot for door-chassis assembly tast is developed in connection with the position correction algorithm shown in Part I. Tow notches and a hole of auto chassis are selected as the reference measure points and a vision based error detection algorithm is devised to measure in accuracy of less than 0.07mm. And also, the transformation between base and tool coordinates of the robot is shown to send the suitable correction quantities caaording to robot's option. The obtained algorithms were satisfactorily implemented for a real door-chassis model such that the system could accomplish visually acceptable door-chassis assembly task.

  • PDF

Position Error Correction Algorithm for Improvement of Positioning Accuracy in BLE Beacon Systems (BLE 비콘 시스템에서 측위 정밀도 향상을 위한 위치 오차 보정 알고리즘)

  • Jung, Jun Hee;Hwang, Yu Min;Hong, Seung Gwan;Kim, Tae Woo;Kim, Jin Young
    • Journal of Satellite, Information and Communications
    • /
    • v.11 no.4
    • /
    • pp.63-67
    • /
    • 2016
  • Recently, BLE beacons are widely used in indoor precision positioning systems because of their low battery consumption and low infrastructure cost. However, existing BLE beacon based indoor positioning algorithms are difficult to compensate for position errors due to the user's moving speed. Therefore, we proposed a position error correction algorithm that combines bounced cancellation and minimum distance maintenance algorithm with a positioning error correction method using direction vectors. Experimental results show that the proposed algorithm guarantees superior positioning performance than the existing indoor positioning algorithm and also improves the performance of position error compensation.