• Title/Summary/Keyword: Corporation model

Search Result 2,054, Processing Time 0.03 seconds

An Analysis of the Economic Effects of the Pilot Project for Multiple-Purpose Utilization of Paddy Fields Focusing on Income and Welfare Changes (소득 및 후생 변화를 통한 농지범용화 시범사업의 경제적 효과 분석)

  • Lim, Che hwan;Ha, Yong hyun;Kim, Do hoon;An, Dong hwan;Yi, Hyang mi;Kim, Kwansoo
    • Journal of Korean Society of Rural Planning
    • /
    • v.28 no.2
    • /
    • pp.71-85
    • /
    • 2022
  • The food self-sufficiency rate of agricultural products in Korea, excluding rice, is around 20%, and the government is promoting various policies including a Multiple-Purpose Utilization of Paddy Fields project, to increase the self-sufficiency rate of major grains. The project for Multiple-Purpose Utilization of Paddy Fields is being promoted as a part of a program to create farmland infrastructure to facilitate the cultivation of crops other than rice in rice paddies, and pilot projects were started in four regions in 2020. The purpose of this study is to analyze the economic effects of the pilot project for Multiple-Purpose Utilization of Paddy Fields, and to propose policies to increase the effectiveness of the project. In order to analyze the economic effect, we estimated the change in farm income generated by switching from rice to other crops, and measured the effect of welfare change using the Equilibrium Displacement Model (EDM). As a result of the analysis, social welfare is expected to increase when the pilot project for Multiple-Purpose Utilization of Paddy Fields is implemented, and the income of the beneficiary farmers is also expected to improve compared to that of single-cropping when double-cropping is implemented. However, it was found that the economic feasibility of the project differs depending on the crops converted. Juksan-myeon, Gimje-si, which is an area where soybean production was successful, was analyzed from the viewpoint of increasing the economic feasibility of the pilot project. Their success factors were analyzed into four major factors: infrastructure, farming methods, education, and collaboration with local agricultural organizations. If such a success story can be utilized in the future project implementation process, it can contribute to the improvement of farm household income and national economic welfare.

Prediction of Change in Growth Rate of Algae in Jinhae Bay due to Cooling Water Discharge (냉배수 방류에 따른 진해만의 해조류 성장 속도 변화 예측)

  • Park, Seongsik;Yoon, Seokjin;Lee, In-Cheol;Kim, Byeong Kuk;Kim, Kyunghoi
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.2
    • /
    • pp.308-323
    • /
    • 2021
  • In this study, we aimed to evaluate the environmental changes in Jinhae Bay caused by cooling water using numerical modeling. Cooling water discharge volume from the results of Case 1 (10 m3 sec-1) showed that the environmental changes in Jinhae Bay were extremely insignificant throughout the study period. In the simulation conditions of Case 2 (100 m3 sec-1), there was a decrease in water temperature of approximately 1 - 3℃ within a 5 km radius from the discharge outlet. In Case 3 (1000 m3 sec-1), a decrease in water temperature of up to 4 - 5℃ was observed within a radius of 8 km from the discharge outlet and cooling water discharge spread throughout the Bay. Growth rate of microalgae decreased by up to 15 % in November, whereas it increased by up to 6 % near the Hangam Bay in Case 3. From the above results, we confirmed that the environmental changes in Jinhae Bay due to cooling water discharged from Tongyeong LNG station are extremely insignificant. Moreover, it is expected that cooling water discharge could be utilized as a counter measure for 'red tide bloom' or 'macroalgae growth'.

A Spatial Analysis of Seismic Vulnerability of Buildings Using Statistical and Machine Learning Techniques Comparative Analysis (통계분석 기법과 머신러닝 기법의 비교분석을 통한 건물의 지진취약도 공간분석)

  • Seong H. Kim;Sang-Bin Kim;Dae-Hyeon Kim
    • Journal of Industrial Convergence
    • /
    • v.21 no.1
    • /
    • pp.159-165
    • /
    • 2023
  • While the frequency of seismic occurrence has been increasing recently, the domestic seismic response system is weak, the objective of this research is to compare and analyze the seismic vulnerability of buildings using statistical analysis and machine learning techniques. As the result of using statistical technique, the prediction accuracy of the developed model through the optimal scaling method showed about 87%. As the result of using machine learning technique, because the accuracy of Random Forest method is 94% in case of Train Set, 76.7% in case of Test Set, which is the highest accuracy among the 4 analyzed methods, Random Forest method was finally chosen. Therefore, Random Forest method was derived as the final machine learning technique. Accordingly, the statistical analysis technique showed higher accuracy of about 87%, whereas the machine learning technique showed the accuracy of about 76.7%. As the final result, among the 22,296 analyzed building data, the seismic vulnerabilities of 1,627(0.1%) buildings are expected as more dangerous when the statistical analysis technique is used, 10,146(49%) buildings showed the same rate, and the remaining 10,523(50%) buildings are expected as more dangerous when the machine learning technique is used. As the comparison of the results of using advanced machine learning techniques in addition to the existing statistical analysis techniques, in spatial analysis decisions, it is hoped that this research results help to prepare more reliable seismic countermeasures.

A Study on the Calculation of Dynamic Yellow Signal Time Based on Approach Speed and Collision Points (접근속도와 상충지점 기반 동적황색신호시간 산정 연구)

  • Hyunho Son;Sanghoon Sung;Choulki Lee;Hyeon Soo Lee
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.22 no.4
    • /
    • pp.14-34
    • /
    • 2023
  • The purpose of this study was to calculate the appropriate yellow-signal time for intersections, to find out the relationship between the approach speed and intersection width when calculating the time, and to secure safety by minimizing conflicts and dilemma sections in intersections that change according to the signal operation. For this purpose, 6,824 data points from 5 intersections were collected and analyzed. The main results of the study are as follows. First, the approach speed of individual vehicles in different lanes was analyzed, and the width of an intersection was defined by considering the conflict in each direction. Second, we developed a multiple regression model based on the approach speed and conflict points, which compensated for the problems of an existing formula. Third, a standard table is presented for applying the appropriate yellow-signal time according to the approach speed and intersection width based on a development formula. A method is also presented to determine the safety of the length of the dilemma according to the change in the yellow-light time by presenting a calculation table that can cross-analyze the yellow-signal time and a dilemma section using the relationship.

Soil Depth Estimation and Prediction Model Correction for Mountain Slopes Using a Seismic Survey (탄성파 탐사를 활용한 산지사면 토심 추정 및 예측모델 보정)

  • Taeho Bong;Sangjun Im;Jung Il Seo;Dongyeob Kim;Joon Heo
    • Journal of Korean Society of Forest Science
    • /
    • v.112 no.3
    • /
    • pp.340-351
    • /
    • 2023
  • Landslides are major natural geological hazards that cause enormous property damage and human casualties annually. The vulnerability of mountainous areas to landslides is further exacerbated by the impacts of climate change. Soil depth is a crucial parameter in landslide and debris flow analysis, and plays an important role in the evaluation of watershed hydrological processes that affect slope stability. An accurate method of estimating soil depth is to directly investigate the soil strata in the field. However, this requires significant amounts of time and money; thus, numerous models for predicting soil depth have been proposed. However, they still have limitations in terms of practicality and accuracy. In this study, 71 seismic survey results were collected from domestic mountainous areas to estimate soil depth on hill slopes. Soil depth was estimated on the basis of a shear wave velocity of 700 m/s, and a database was established for slope angle, elevation, and soil depth. Consequently, the statistical characteristics of soil depth were analyzed, and the correlations between slope angle and soil depth, and between elevation and soil depth were investigated. Moreover, various soil depth prediction models based on slope angle were investigated, and corrected linear and exponential soil depth prediction models were proposed.

A Review on the Stratigraphy, Depositional Period, and Basin Evolution of the Bansong Group (반송층군의 층서, 퇴적시기, 분지 진화에 관한 고찰)

  • Younggi Choi;Seung-Ik Park;Taejin Choi
    • Economic and Environmental Geology
    • /
    • v.56 no.4
    • /
    • pp.385-396
    • /
    • 2023
  • The Mesozoic Bansong Group, distributed along the NE-SW thrust fault zone of the Okcheon Fold Belt in the Danyang-Yeongwol-Jeongseon areas, contains important information on the two Mosozoic orogenic cycles in the Koran Peninsula, the Permian-Triassic Songrim Orogeny and the Jurassic Daebo Orogeny. This study aims to review previous studies on the stratigraphy, depositional period, and basin evolution of the Bansong Group and to suggest future research directions. The perspective on the implication of the Bansong Group in the context of the tectonic evolution of the Korean Peninsula is largely divided into two points of view. The traditional view assumes that it was deposited as a product of the post-collisional Songrim Orogeny and then subsequently deformed by the Daebo Orogeny. This interpretation is based on the stratigraphic, paleontologic, and structural geologic research carried out in the Danyang Coalfield area. On the other hand, recent research regards the Bansong Group as a product of syn-orogenic sedimentation during the Daebo Orogeny. This alternative view is based on the zircon U-Pb ages of pyroclastic rocks distributed in the Yeongwol area and their structural position. However, both models cannot comprehensively explain the paleontological and geochronological data derived from Bansong Group sediments. This suggests the need for a new basin evolution model integrated from multidisciplinary data obtained through sedimentology, structural geology, geochronology, petrology, and geochemistry studies.

A Study on the Potential of Agricultural Water and Environmental Flow Supply according to Regulating Lower Control Storage Rate for the Irrigation Reservoir (농업용 저수지의 하한 관리 저수율 설정에 따른 농업용수 및 환경용수 공급 가능성 고찰)

  • Jeong, Jiyeon;Jeung, Minhyuk;Beom, Jina;Park, Minkyeong;Lee, Jaenam;Yoo, Seung-Hwan;Yoon, Kwang-Sik
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.65 no.2
    • /
    • pp.21-33
    • /
    • 2023
  • While the main purpose of irrigation reservoirs is to supply agricultural water, the needs of environmental flow and flood control has been expanded. The agricultural reservoirs have been operated in the form of carry-over system until now. Therefore, the supply of agricultural water is difficult when the storage rate is not sufficiently secured after large volume of irrigation. In addition, there are regulation of the upper storage rate for some large reservoirs during the flood season, but lower storage rate is not regulated. Accordingly, this study aims to evaluate the capacity of agricultural water and environmental flow supply by setting the management lower storage rate of reservoir. The changes in the supply of agricultural and environmental flow was simulated according to the three different regulating lower storage rate scenarios. As a result, it was judged effective in terms of water supply managing the lower storage rate up to 30% when the initial storage rate of farming period is above annual average for the Naju reservoir considering existing water management practice. If the lower storage rate would have been controlled above 30%, the supply of agricultural water might be increased and non-effective discharge amount would be decreased compared to other scenarios during dry period of 2016-2018.

Dynamic p-y Backbone Curves for a Pile in Saturated Sand (포화 사질토 지반에서의 동적 p-y 중추곡선)

  • Yang, Eui-Kyu;Yoo, Min-Taek;Kim, Hyun-Uk;Kim, Myoung-Mo
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.11
    • /
    • pp.27-38
    • /
    • 2009
  • In this study, a series of 1 g shaking table model pile tests were carried out in saturated dense and loose sand to evaluate dynamic p-y curves for various conditions of flexural stiffness of a pile shaft, acceleration frequency and acceleration amplitude for input loads. Dynamic p-y backbone curve which can be applied to pseudo static analysis for saturated dense sand was proposed as a hyperbolic function by connecting the peak points of the experimental p-y curves, which corresponded to maximum soil resistances. In order to represent the backbone curve numerically, empirical equations were developed for the initial stiffness ($k_{ini}$) and the ultimate capacity ($p_u$) of soils as a function of a friction angle and a confining stress. The applicability of a p-y backbone curve was evaluated based on the centrifuge test results of other researchers cited in literature, and this suggested backbone curve was also compared with the currently available p-y curves. And also, the scaling factor ($S_F$) to account for the degradation of soil resistance according to the excess pore pressure was developed from the results of saturated loose sand.

End Bearing Capacity of Pile Tip-enlarged PHC Piles in Weathered Rock (풍화암에 근입된 선단확장형 PHC 말뚝의 선단지지력)

  • Yoo, Chung-Sik;Heo, Kab-Soo;Song, Ki-Yong;Kim, Sun-Bin
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.1
    • /
    • pp.23-37
    • /
    • 2007
  • Recently a concept of pile-tip enlarged PHC pile (Ext-PHC pile), for use in the auger-drilled construction method, has been developed and is being implemented in practice. A series of field axial load tests on both PHC and Ext-PHC piles were conducted at an experimental site. In addition, a parametric study on a number of influencing factors was made using a validated finite element model. The field axial load tests indicated an enhanced load-settlement characteristics for the Ext-PHC piles compared with the PHC piles, giving approximately 50% increase in the end bearing capacity. Also found in the results of the parametric study was that the increase in the end bearing capacity of Ext-PHC piles slightly varies with the mechanical properties of supporting ground as well as pile length, in the range of 1.25 to 1.4 time that of PHC. Overall, the results of the field tests as well as the numerical study confirmed that the end bearing capacity of PHC pile can be improved by the concept of.Ext-PHC pile.

Digital Restoration of Missing Parts and Production of Three-dimensional Printed Replicas the Stone Buddhas in Four Directions in Hwajeon-ri, Yesan, Korea (예산 화전리 석조사면불상의 결손부 디지털 복원 및 3차원 프린팅 복제모형 제작)

  • Lee Seungjun;Jo Younghoon;Kim Jiho;Cho Hyosik
    • Conservation Science in Museum
    • /
    • v.29
    • /
    • pp.99-110
    • /
    • 2023
  • The stone fragments that are missing from the stone cultural heritage have limited use beyond being directly fitted to identify their original position, as they are relatively heavy and bulky, and there is the further risk of secondary physical damage during manual work. Therefore, in this study, morphological relationships between the missing parts and the stone fragments were identified through digital restoration, and a three-dimensional (3D) printed replica was created for use at the exhibition for Stone Buddhas in Four Directions in Hwajeon-ri, Yesan, where 72 stone fragments had been excavated together. First, for the digital restoration, stone fragments of similar shapes were selected after the coordinates of the 3D scanning model were aligned in virtual space. In addition, the stone fragments were printed using a 3D printer to check whether they were physically related to the missing parts. Thus, the original positions of a total of nine stone fragments were identified. To utilize these research results in the exhibition, a 1:1 replica of the Stone Buddhas in Four Directions was produced using 3D printing technology, and the nine stone fragments were also restored to their original positions. The digital technology used in this study is of great importance in that it not only made up for the limitations of the direct manual method but also suggested the possibility of expanding its application to the fields of documentation, restoration, and replication of similar cultural heritage.