• Title/Summary/Keyword: Coronal Mass Ejections

Search Result 83, Processing Time 0.022 seconds

Asymmetric Cosmic Ray Modulation of Forbush Decreases Associated with the Propagation Direction of Interplanetary Coronal Mass Ejection

  • Jongil Jung;Suyeon Oh;Yu Yi;Jongdae Sohn
    • Journal of The Korean Astronomical Society
    • /
    • v.56 no.1
    • /
    • pp.117-124
    • /
    • 2023
  • A Forbush decrease (FD) is a depression of cosmic ray (CR) intensity observed by ground-based neutron monitors (NMs). The CR intensity is thought to be modulated by the heliospheric magnetic structures including the interplanetary coronal mass ejection (ICME) surrounding the Earth. The different magnitude of the decreasing in intensity at each NM was explained only by the geomagnetic cutoff rigidity of the NM station. However, sometimes NMs of almost the same cutoff rigidity in northern and southern hemispheres observe the asymmetric intensity depression magnitudes of FD events. Thus, in this study we intend to see the effects on CR intensity modulation of FD event recorded at different NMs due to different ICME propagation directions as an additional parameter in the model explaining the CR modulation. Fortunately, since 2006 the coronagraphs of twin spacecraft of the STEREO mission allow us to infer the propagation direction of ICME associated with the FD event in 3-dimension with respect to the Earth. We suggest the hypothesis that the asymmetric CR modulations of FD events are determined by the propagation directions of the associated ICMEs.

RELATIONSHIP BETWEEN CME KINEMATICS AND FLARE STRENGTH

  • MOON Y.-J.;CHOE G. S.;WANG HAIMIN;PARK Y. D.;CHENG C. Z.
    • Journal of The Korean Astronomical Society
    • /
    • v.36 no.2
    • /
    • pp.61-66
    • /
    • 2003
  • We have examined the relationship between the speeds of coronal mass ejections (CMEs) and the GOES X-ray peak fluxes of associated flares. Noting that previous studies were possibly affected by projection effects and random association effects, we have considered two sets of carefully selected CME-flare events: four homologous events and four well-observed limb events. In the respective samples, good correlations are found between the CME speeds and the GOES X-ray peak fluxes of the associated flares. A similarly good correlation is found for all eight events of both samples when the CME speeds of the homologous events are corrected for projection effect. Our results suggest that a close relationship possibly exists between CME kinematics and flaring processes.

Origin of the Multiple Type II Solar Radio Bursts Observed on December 31 2007

  • Cho, Kyung-Suk;Bong, Su-Chan;Kim, Yeon-Han;Kwon, Ryun-Young;Park, Geun-Seok;Moon, Yong-Jae;Park, Young-Deuk
    • Bulletin of the Korean Space Science Society
    • /
    • 2009.10a
    • /
    • pp.37.1-37.1
    • /
    • 2009
  • Solar type II radio burst is regarded as a signature of coronal shock. However its association with coronal mass ejections (CMEs)-driven shock and/or flare blast waves remains controversial. On December 31 2007, SOHO/LASCO and STEREO/COR observed a CME that occurred on the east limb of the Sun. Meanwhile, two type II bursts were observed sequently by KASI/E-Callisto and the Culgoora radio observatory during the CME apparence time. In this study, we estimate kinematics of the two coronal shocks from dynamic spectrum of the multiple type II bursts and compare with the kinematics of the CME derived from the space observations. An origin of the multiple type II bursts is inspected and discussed briefly.

  • PDF

Solar Activity as a Driver of Space Weather: I. Introduction

  • Yong-Jae Mun;Gyeong-Seok Jo;Rok-Sun Kim;Yeong-Deuk Park
    • Bulletin of the Korean Space Science Society
    • /
    • 2004.04a
    • /
    • pp.37-37
    • /
    • 2004
  • It is well known that solar activity such as coronal mass ejections(CMEs) and flares is a direct driver of space weather. In this talk, we introduce its main physical characteristics and physical connections among CMEs(or flares) -Interplanetary(IP) shocks - interplanetary CMEs (or magnetic clouds) - geomagnetic storms. Specifically, solar activity is discussed in terms of space weather scales (R:Radio Blackout, S: Solar Radiation Storms, G: Geomagnetic Storms). (omitted)

  • PDF

Problems in Identification of ICMEs and Magnetic Clouds

  • Marubashi, Katsuhide;Kim, Yeon-Han;Cho, Kyung-Suk;Park, Young-Deuk;Choi, Kyu-Cheol;Baek, Ji-Hye;Choi, Seong-Hwan
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.35 no.2
    • /
    • pp.46.1-46.1
    • /
    • 2010
  • This work is a part of our project to establish a Website which provides a list of magnetic clouds (MCs) identified by WIND and ACE spacecraft. MCs are characterized by their magnetic fields that are well described by magnetic flux rope structures, whereas interplanetary coronal mass ejections (ICMEs) are interplanetary manifestations of coronal mass ejections (CMEs), usually identified by differences of plasma and magnetic field characteristics from those in the background solar wind. It is widely accepted that, while MCs are generally identified within ICMEs, the number of MCs are significantly lower than the number of ICMEs. In our effort to identify MCs, however, we have found that there was a big problem in identification method of MCs in previous works. Generally speaking, most of the previous surveys failed in identifying MCs which encounter the spacecraft at large distances from the MC axis, or near the surface of MC structures. In our survey, MCs are identified as the region of which magnetic fields are well described by appropriate flux rope models. Thus, we could selected over 45 MCs, in 1999 solar wind data for instance, while 33 ICMEs are listed in the Website of the ACE Science Center reported by Richardson and Cane.

  • PDF

GROUND LEVEL ENHANCEMENTS IN RELATION WITH ENERGETIC SOLAR FEATURES AND DISTURBANCES IN SOLAR WIND PLASMA PARAMETERS

  • VERMA, PYARE LAL
    • Publications of The Korean Astronomical Society
    • /
    • v.30 no.2
    • /
    • pp.47-51
    • /
    • 2015
  • Ground Level Enhancements (GLEs) in cosmic ray intensity observed during the period of 1997-2012 have been studied with energetic solar features and disturbances in solar wind plasma parameters and it is seen that all the GLEs have been found to be associated with coronal mass ejections, hard X-ray solar flares and solar radio bursts. All the GLEs have also been found to be associated with sudden jumps in solar proton flux of energy of ${\geq}60Mev$. A positive correlation with correlation coefficient of 0.48 has been found between the maximum percentage intensity (Imax%) of Ground Level Enhancements and the peak value of solar proton flux of energy (${\geq}60Mev$). All the Ground Level Enhancements have been found to be associated with jumps in solar wind plasma velocity (JSWV) events. A positive correlation with correlation coefficient of 0.43 has been found between the maximum percentage intensity (Imax %) of Ground Level Enhancements and the peak value of solar wind plasma velocity of associated (JSWV) events. All the Ground Level Enhancements have been found to be associated with jumps in solar wind plasma pressure (JSWP) events. A positive correlation with correlation coefficient of 0.67 has been found between the maximum percentage intensity (Imax %) of Ground Level Enhancements and the peak value of solar wind plasma pressure of associated (JSWP) events and of 0.68 between the maximum percentage intensity (Imax %) of Ground Level Enhancements and the magnitude of the jump in solar wind plasma pressure of associated (JSWP) events.

Comparison of CME mean density based on a full ice-cream cone structure and its corresponding ICME one

  • Na, Hyeonock;Moon, Yong-Jae
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.43 no.1
    • /
    • pp.54.1-54.1
    • /
    • 2018
  • For space weather forecast, it is important to determine three-dimensional parameters of coronal mass ejections (CMEs). To estimate three-dimensional parameters of CMEs, we have developed a full ice-cream cone model which is a combination of a symmetrical flat cone and a hemisphere. By applying this model to 12 SOHO/LASCO halo CMEs, we find that three-dimensional parameters from our method are similar to those from other stereoscopic methods. For several geoeffective CME events, we determine CME mass by applying the Solarsoft procedure (e.g., cme_mass.pro) to SOHO/LASCO C3 images. CME volumes are estimated from the full ice-cream cone structure. We derive CME mean density as a function of CME height for these CMEs, which are approximately fitted to power-law functions. We find that the ICME mean densities extrapolated from the power law functions, are correlated with their corresponding ICME ones in logarithmic scales.

  • PDF