• Title/Summary/Keyword: Corona noise

Search Result 68, Processing Time 0.031 seconds

End-fitting Design and Performance Evaluation of Polymer Insulator (폴리머 애자의 End-fitting 설계 및 성능 평가기술)

  • Cho, H.G.;Lee, U.Y.;Han, S.W.;Han, D.H.;Ji, W.Y.;Yeo, H.G.;Kang, D.W.;Chun, J.U.;Lee, H.K.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.05b
    • /
    • pp.25-29
    • /
    • 2004
  • Corona on polymer materials causes deterioration by the combined action of the discharge striking the surface and the action of certain chemical compounds that are formed by the discharges. In the design and manufacture of polymer insulators must be sufficiently large to avoid corona discharges, otherwise a shielding or corona ring (grading ring) needs to be installed on the insulator. To conduct this purpose, many researchers have investigated end-fitting of polymer insulator by voltage distribution simulation and electrical test. Grading rings are used to improve the performance of the insulator in multiple ways. They can reduce corona and associated audible noise and radio influence and television interference. The factors determining the uses of a grading ring are line voltage, geometry and dimensions of end fittings, geometry and dimensions of line hardware, and environmental conditions. In this paper, electrical property of polymer insulator with end-fitting design have been investigated by electrical field analysis, various end-fitting design, tracking wheel test, corona inception voltage and extinction voltage. Electrical field analysis is conducted by FEM program and various end-fitting is designed through this result. Designed end-fittings are manufactured and their performance is conducted by electrical performance test.

  • PDF

Analysis of Acoustic Signals Produced by Corona and Series-arc Discharges (코로나와 직렬아크 방전에 의해 발생한 음향신호의 분석)

  • Jo, Hyang-Eun;Jin, Chang-Hwan;Park, Dae-Won;Kil, Gyung-Suk;Ahn, Chang-Hwan
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.2
    • /
    • pp.147-152
    • /
    • 2012
  • This paper dealt with the frequency component analysis of acoustic signals produced by corona and series-arc discharges as a diagnostic technique for closed-switchboards. Corona and series-arc discharge were simulated by a needle-plane electrode and an arc generator specified in UL1699, respectively. Acoustic signal was detected by a wideband acoustic sensor with a frequency bandwidth of 4 Hz~100 kHz (-3 dB). We analyzed frequency spectrums of the acoustic signals detected in various discharge conditions. The results showed that acoustic signals mainly exist in ranges from 30 kHz to 60 kHz. From the experimental results, an acoustic detection system which consists of a constant current power supply (CCP), a low noise amplifier (LNA) and a band pass filter was designed and fabricated. The CCP separates the signal component from the DC source of acoustic sensor, and the LNA has a gain of 40 dB in ranges of 280 Hz~320 kHz. The high and the low cut-off frequency are 30 kHz and 60 kHz, respectively. We could detect corona and series-arc discharges without any interference by the acoustic detection system, and the best frequency is considered in ranges of 30 kHz~60 kHz.

TOWARD A NEXT GENERATION SOLAR CORONAGRAPH: DIAGNOSTIC CORONAGRAPH EXPERIMENT

  • Cho, Kyung-Suk;Yang, Heesu;Lee, Jae-Ok;Bong, Su-Chan;Kim, Jihun;Choi, Seonghwan;Park, Jongyeob;Cho, Kyuhyoun;Baek, Ji-Hye;Kim, Yeon-Han;Park, Young-Deuk
    • Journal of The Korean Astronomical Society
    • /
    • v.53 no.4
    • /
    • pp.87-98
    • /
    • 2020
  • The Korea Astronomy and Space Science Institute (KASI) has been developing a next-generation coronagraph (NGC) in cooperation with NASA to measure the coronal electron density, temperature, and speed simultaneously, using four different optical filters around 400 nm. KASI organized an expedition to demonstrate the coronagraph measurement scheme and the instrumental technology during the 2017 total solar eclipse (TSE) across the USA. The observation site was in Jackson Hole, Wyoming, USA. We built an eclipse observation system, the Diagnostic Coronal Experiment (DICE), composed of two identical telescopes to improve the signal-to-noise ratio. The observation was conducted at four wavelengths and three linear polarization directions in the limited total eclipse time of about 140 seconds. We successfully obtained polarization data for the corona but we were not able to obtain information on the coronal electron temperature and speed due to the low signal-to-noise ratio of the optical system and strong emission from prominences located at the western limb. In this study, we report the development of DICE and the observation results from the eclipse expedition. TSE observation and analysis with our self-developed instrument showed that a coronagraph needs to be designed carefully to achieve its scientific purpose. We gained valuable experience for future follow-up NASA-KASI joint missions: the Balloon-borne Investigation of the Temperature and Speed of Electrons in the Corona (BITSE) and the COronal Diagnostic EXperiment (CODEX).

Study on Electrical Environmental Obstacle Using a 765kV Double Circuit Test Line (765kV 시험선로를 이용한 전기환경장해 특성연구)

  • Kim, Jeong-Boo;Jo, Seong-Sae;Shin, Goo-Yong;Lee, Dong-Il;Yang, Kwang-Ho;Ahn, Hee-Sung;Bae, Jeong-Hyo;Koo, Ja-Yoon;Min, Seok-Weon
    • Proceedings of the KIEE Conference
    • /
    • 1994.07b
    • /
    • pp.1517-1519
    • /
    • 1994
  • This paper describes electrical environmental study of a 765kV double circuit test line. Corona performance on several candidate conductor bundles has been investigated in the corona cage (single phase simulation facility) since 1984. We have known that six RAIL conductor bundle is the most suitable for the 765kV transmission Line, [3] To investigate electrical environmental impact of the future commerciale line, we build a full sacle 765kV test line in 1993. The test results of Audible Noise, Radio Interference, TV Interference from August, 1993 to Jan. 1994 were measured as $48.7[dBA](L_{50})$. $57.4[dB{\mu}V/m]$(Fair weather, $L_{50})$. $14.5[dB${\mu}$V/m]$(Fair weather, $L_{50}$). We have found that the Audible Noise data were very close to the predicted(48.5 [dBA]) by BPA Corona and Field Effects Computer program, however, the RI and TVI data were much higher than predicted(42 [dBmV/m], $7.9[dB{\mu}V/m)$ by the BPA program. We have investigating the reason of the difference. In the constructing of full scale test line, we developed the tubular tower, 765kV test transformer and hardwares of 765kV transmission line insulator strings. Also we will investigate the effects of plants under the 765kV test Line.

  • PDF

Formulas for Predicting Radio Noise from Overhead HVAC Transmission Lines (초고압 가공 송전선로의 라디오 잡음 예측계산식 개발 (I))

  • Yang, Kwang-Ho;Ju, Mun-No;Myung, Sung-Ho;Shin, Koo-Yong;Lee, Dong-Il
    • Proceedings of the KIEE Conference
    • /
    • 1999.07c
    • /
    • pp.1088-1090
    • /
    • 1999
  • The radio noise produced by corona discharge in high voltage transmission tines is one of the most important line design considerations. Therefore it is necessary to pre-evaluate radio noise for transmission line designers using Prediction formulas or field test results. In this Paper, more accurate and useful formulas for Predicting radio noise during fair and foul weathers in AC transmission lines were proposed through comparison with the existing formulas. Also it was verified by comparing with the long-term measured data from operating lines that the Proposed formulas are very accurate. The Proposed prediction formulas are developed by the applications of nonlinear least square optimization method to radio noise database collected from lines throughout the world.

  • PDF

A Study on the Environmental Effects of Compact Tower in Transmission Line (송전철탑 Compact화에 따른 전기환경 영향 연구)

  • Lee, Jung-Won;Lee, Won-Kyo;Lee, Dong-Il
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.8
    • /
    • pp.645-650
    • /
    • 2010
  • The continuous increase demand for electric power leads to the additional construction of transmission facilities, but it is not easy to acquire right-of-way for transmission facilities. Therefor, there is a need for compact tower that can be built on a narrow right-of-way the compact tower with polymer insulation arm is a solution. It can be upgrading conventional 154 kV transmission line voltages to 345 kV levels. However transmission voltage is increasing, environment interference (corona noise, radio interference, etc.) will occur gradually. This environment interference is depending on the electrical clearances of tower and configuration of conductors. Therefore the analysis of the factors of environmental interference is necessary in order to upgrading transmission voltage. This paper presents the design factor of a compact tower to meet the environmental interference standard.

The Development of System for Measuring Ion Generated from HVDC Overhead Transmission Line (초고압 직류 가공 송전선로에서 발생되는 이온 계측시스템 개발)

  • Ju, Mun-No;Yang, Kwang-Ho;Lee, Dong-Il;Shin, Koo-Yong;Lim, Jae-Seop
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.11
    • /
    • pp.2035-2040
    • /
    • 2008
  • The electrical discharge of high voltage direct current(HVDC) overhead transmission line generate audible noise, radio noise, electric field, ion current and induced voltage on the ground. These items are major factors to design environmentally friendly configuration of DC transmission line. Therefore, HVDC transmission lines must be designed to keep all these corona effects within acceptable levels. Several techniques have been used to assess interference caused by ions on HVDC overhead transmission line. In this study, to assess the ion characteristic of DC line, the ion current density and induced voltage caused by ion flow were measured by plate electrodes manufactured from a metal flat board and charged bodies, respectively. The charged body has two types of cylinder and cylindrical plate. From the results of calibration experiments, the sensitivity of flat electrode and charged body can be obtained. At present, the developed system is used to investigate the ion generation characteristics of Kochang DC ${\pm}500kV$ test line.

Characteristic of the Ion Wind Using Corona Discharge and Enhancement of Heat Transfer (코로나 방전을 이용한 이온풍의 특성분석 및 열전달 향상)

  • Lee Jae-Il;Hwang Yu-Jin;Joo Ho-Young;Ahn Young-Chull;Shin Hee-Soo;Lee Jae-Keun
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.11
    • /
    • pp.1022-1027
    • /
    • 2005
  • An experimental study is conducted to investigate the characteristics of the ion wind generated by the electric field between a needle electrode and the parallel plate electrodes. The ion wind enhances heat and mass transfer between the surface and the surrounding gas. Moreover such enhancement makes no noise or vibration. This study is conducted to develop the electronic cooling device. The measured gas velocities and heat transfer coefficients are proportional to the applied voltage. The heat transfer coefficient can be increased as compared with a natural convection. The maximum enhancement of heat transfer obtained in this system is $47\%$ for 3 W in heat transfer rate.

Effect of the Third Electrode of a Needle-Mesh Airgap on Ionic Wind Generation (침대 그물전극간의 제3전극이 이온풍 발생에 미치는 영향)

  • Hwang, Deok-Hyun;Moon, Jae-Duk
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.11
    • /
    • pp.2023-2026
    • /
    • 2008
  • Cooling technologies using natural and forced convection are limited and operated in very low efficiency. The corona discharge is utilized as the driving mechanism for an ionic pump, which allows for air flow control and generation with low noise and no moving parts. These ideal characteristics of ionic pump give rise to variety applications. However, all of these applications would benefit from maximizing the flow velocities and efficiencies of the pumps. In this study a needle-mesh type ionic pump, with a ring type third electrode installed just near the needle point, has been investigated by focusing on elevating the ionic wind velocity and efficiency. As a result, the enhanced ionic wind velocity and increased power yield can be obtained with the proposed ionic pump with the third electrode.

Ionic Wind Generator With Third Electrode (3전극형 이온풍 발생장치)

  • Hwang, Deok-Hyun;Jung, Hoi-Won;Moon, Jae-Duk
    • Proceedings of the KIEE Conference
    • /
    • 2008.05a
    • /
    • pp.139-140
    • /
    • 2008
  • Cooling systems for electronic equipments are becoming more important. Cooling technologies using natural and forced convection are limited and operated in very low efficiency. A corona discharge is utilized as the driving mechanism for anair pump, which allows for airflow generation with low noise and no moving parts. However they do not enhance the flow rate and overcome the control mechanism of the pump. In this study a point-mesh type air pump, with a third electro de installed near the corona point, has been proposed and investigated by focusing on elevating the ionic wind velocity and power yield. As a result, the significantly enhanced ionic wind velocity and tremendously increased power yield can be obtained with the proposed air pump system.

  • PDF