• 제목/요약/키워드: Cornering Force

검색결과 39건 처리시간 0.024초

타이어 펑크 차량의 주행 및 충돌후 거동 (Coasting and Post-impact Motion of a Vehicle With Tire Blowout)

  • 한인환;임상현;박종찬;최지훈
    • 대한교통학회지
    • /
    • 제32권5호
    • /
    • pp.503-512
    • /
    • 2014
  • 본 논문에서는 펑크 타이어 힘 시험 연구 결과들을 다양하게 수집하고 분석하여, 펑크(blow-out) 타이어 차량 동적 거동 해석을 위한 구름저항력(rolling resistance), 셀프 얼라이닝 토크(self aligning torque), 코너링 강성(cornering stiffness), 반경방향 강성(radial stiffness)과 같은 관련 계수들의 적정값을 추정하였다. 이러한 타이어 펑크 관련한 입력계수들을 자동차 사고 해석 상용 프로그램에서 설정하여 타이어 펑크 효과를 구현한 시뮬레이션 해석을 수행하였다. 그리고, 정상 차량들 간의 다양한 충돌 형태들과 속도 등을 참조하여, 펑크 차량의 충돌 유형들을 구성하고 시뮬레이션 해석을 수행하여 충돌 특성을 구하였다. 본 연구에서 제시하는 타이어 펑크 혹은 손상에 대한 고려는 보다 신뢰성 있는 자동차 사고 재구성에 기여할 수 있을 것이다.

요마크 분석을 통한 사고 재구성 (Accident reconstruction using yaw mark analysis)

  • 하정섭;이승종
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 추계학술대회 논문집
    • /
    • pp.443-446
    • /
    • 2002
  • A vehicle oversteered or cornering at excessive speed leaves tire yaw mark on the road surface. A yaw mark is a sign that the tire was sideslipping and exceeded its frictional limit because of centrifugal force. Problems exist with the traditional equation, “critical speed formula (CSF)”, that limits its practical use in traffic accident reconstruction. A major problem is that the equation dose not account for vehicle dynamics and interface between tire and road. The literature refers to that the accuracy of the critical speed formula varies with several factors. New equations that account for vehicle dynamics are introduced in this paper. A comparison of the accuracy of the new method and the traditional method in the calculation of speed is conducted.

  • PDF

차량 선회 안정성을 위한 휠 슬립 제어시스템 개발 (Development of a Wheel Slip Control System for Vehicle Cornering Stability)

  • 홍대건;허건수;황인용;선우명호
    • 한국자동차공학회논문집
    • /
    • 제14권4호
    • /
    • pp.174-180
    • /
    • 2006
  • The wheel slip control systems are able to control the braking force more accurately and can be adapted to different vehicles more easily than conventional braking control systems. In order to achieve the superior braking performance through the wheel slip control, real-time information such as the tire braking force at each wheel is required. In addition, the optimal target slip values need to be determined depending on the braking objectives such as minimum braking distance, stability enhancement, etc. In this paper, a wheel slip control system is developed for maintaining the vehicle stability based on the braking monitor, wheel slip controller and optimal target slip assignment algorithm. The braking monitor estimates the tire braking force, lateral tire force and brake disk-pad friction coefficient utilizing the extended Kalman filter. The wheel slip controller is designed based on the sliding mode control method. The target slip assignment algorithm is proposed to maintain the vehicle stability based on the direct yaw moment controller and fuzzy logic. The performance of the proposed wheel slip control system is verified in simulations and demonstrates the effectiveness of the wheel slip control in various road conditions.

FEM을 이용한 타이어의 벨트각도에 따른 강성 및 PRAT 특성 연구 (A Study on Characteristics of Stiffness and PRAT due to the Belt Angle of Tire using FEM)

  • 성기득;김성래;김기현;김선주;조춘택
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.1371-1375
    • /
    • 2005
  • The paper has analyzed the influence of tire design variable on the tire Force and Moment (F&M) characteristics, especially by the belt angle, the Plysteer Residual Aligning Torque (PRAT) which is considered as one of the causing factors for the vehicle pull. To validate the tire FE model, the tire stiffness and the PRAT which can be derived from the simulation data have been compared with the experimental data of test machine. In addition to PRAT characteristic, the tire stiffness and cornering characteristics due to the belt angle have been investigated. The effects of drum's curvature on the PRAT have been also investigated using the tire FE model and the usefulness of the current drum type F&M test machine can be confirmed.

  • PDF

인공신경망을 이용한 가속도 센서 기반 타이어 트레드 마모도 판별 알고리즘 (Classification of Tire Tread Wear Using Accelerometer Signals through an Artificial Neural Network)

  • 김영진;김형준;한준영;이석
    • 한국산업융합학회 논문집
    • /
    • 제23권2_2호
    • /
    • pp.163-171
    • /
    • 2020
  • The condition of tire tread is a key parameter closely related to the driving safety of a vehicle, which affects the contact force of the tire for braking, accelerating and cornering. The major factor influencing the contact force is tread wear, and the more tire tread wears out, the higher risk of losing control of a vehicle exits. The tire tread condition is generally checked by visual inspection that can be easily forgotten. In this paper, we propose the intelligent tire (iTire) system that consists of an acceleration sensor, a wireless signal transmission unit and a tread classifier. In addition, we also presents classification algorithm that transforms the acceleration signal into the frequency domain and extracts the features of several frequency bands as inputs to an artificial neural network. The artificial neural network for classifying tire wear was designed with an Multiple Layer Perceptron (MLP) model. Experiments showed that tread wear classification accuracy was over 80%.

자석식 무한궤도를 가진 모노레일의 동역학 해석 (Dynamic Analysis of Monorail System with Magnetic Caterpillar)

  • 원종성;탁태오
    • 한국자동차공학회논문집
    • /
    • 제20권2호
    • /
    • pp.47-55
    • /
    • 2012
  • This work deals with dynamic analysis of a monorail system with magnetic caterpillar where magnets are embedded inside each articulated element of the caterpillar, augmenting traction force of main rubber wheels to climb up slope up to 15 degree grade. Considerations are first given to determine stiffness of the primary and secondary suspension springs in order for the natural frequencies of car body and bogie associated with vertical, pitch, roll and yaw motion to be within generally accepted range of 1-2 Hz. Equations for calculating magnetic force needed to climb up given slope are derived, and a magnetic caterpillar system for 1/6 scale monorail is designed based on the derivation. To assess the hill climbing ability and cornering stability, and make sure smooth operation of the side and vertical guiding wheels which is critical for safety, a multibody model that takes into account of every component level design characteristics of car, bogie, and caterpillar is set up. Through hill climbing simulation and comparison with measurement of the limit slope, the validity of the analysis and design of the magnetic caterpillar system are demonstrated. Also by studying the curving behavior, maximum curving speed without rollover, functioning of lateral motion constraint system, the effects of geometry of guiding rails are studied.

차량 운전조건과 속도변화를 고려한 요우모멘트제어 (The Direct Yaw-Moment Control regarding to control the vehicle handling condition)

  • 장영진;남광희
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2013년도 추계학술대회 논문집
    • /
    • pp.69-70
    • /
    • 2013
  • By using differential force between left and right wheel, lateral motion can be controlled known as Direct Yaw-moment Control (DYC). In previous researches, DYC control is proposed to increase the stability of the vehicle, but maneuverability has not been discussed sufficiently. The car handling condition which is called the index parameter of maneuverability is dependent on the vehicle velocity and steering angle. To achieve the desired vehicle's cornering path, the car handling condition must be considered sufficiently. In this paper, the novel DYC method is proposed which gives the car handling condition regardless of the longitudinal speed. The proposed controller is based on the PI controller to feedback the curvature parameter. The controlled system shows the advantages of DYC regarding to the reference trajectory by the dual motor system. With respect to the uncontrolled model, the effectiveness of the proposed method is validated by numerical examples.

  • PDF

Understanding Automobile Roll Dynamics and Lateral Load Transfer Through Bond Graphs

  • ;Deam Karnopp
    • 한국자동차공학회논문집
    • /
    • 제6권3호
    • /
    • pp.34-44
    • /
    • 1998
  • It is clear that when an automobile negotiates a curve the lateral acceleration causes an increase in tire normal load for the wheels on the outside of the curve and a decrease in load for the inside wheels. However, just how the details of the suspension linkages and the parameters of the springs and shock absorbers affect the dynamics of the load transfer os not easily understood. One even encounters the false idea that since it is the compression and extension of the main suspension springs spring body role which largely determines the changes in normal load, of roll could be reduced, the load transfer would also be reduced. Using free body diagrams, one can explain quite clearly how the load is transferred for steady state cornering, and, using complex multibody models of particular vehicles one can simulate in good fidelity how load transfer occurs dynamically. Here we adopt a middle ground by using the concept of roll center and using a series of half-car bond graph models to point out main effects. Since bond graph junction structures automatically and consistently constrain geometric and force variables simultaneously, they can be used to point out hidden assumptions of other simplified vehicle models.

  • PDF

Optimal Design of Discrete Time Preview Controllers for Semi-Active and Active Suspension systems

  • Youn, Il-Joong
    • Journal of Mechanical Science and Technology
    • /
    • 제14권8호
    • /
    • pp.807-815
    • /
    • 2000
  • In this paper, modified discrete time preview control algorithms for active and semi-active suspension systems are derived based on a simple mathematical 4 DOF half-car model. The discrete time preview control laws for ride comfort are employed in the simulation. The algorithms for MIMO system contain control strategies reacting against body forces that occur at cornering, accelerating, braking, or under payload, in addition to road disturbances. Matlab simulation results for the discrete time case are compared with those for the continuous time case and the appropriateness of the discrete time algorithms are verified by the of simulation results. Passive, active, and semi-active system responses to a sinusoidal input and an asphalt road input are analysed and evaluated. The simulation results show the extent of performance degradation due to numerical errors related to the length of the sampling time and time delay.

  • PDF

코너 출구속도가 직선주로 주행 소요시간에 미치는 영향 (Effect of Corner Exit Speed on the Time to Go Down a Straight)

  • 장성국
    • 한국자동차공학회논문집
    • /
    • 제11권6호
    • /
    • pp.141-146
    • /
    • 2003
  • This paper calculates the elapsed time to go down a straight as a function of the corner exit speed and considers air resistance, rolling resistance, and slope resistance to figure out the force for forward acceleration. In a car racing, the most critical comer in a course is the one before the longest straight. A driver can lose a quite amount of time by taking a bad line in a corner. Taking a bad line also causes poor comer exit speed which in turn costs more elapsed time to go down a straight. The results are not so dramatic as in the case of cornering but are showing why one should take the correct corner racing line to get the maximum exit speed. Also, for the case of drag race, the elapsed time to go 1/4 mile is calculated.