• 제목/요약/키워드: Cornering

검색결과 133건 처리시간 0.023초

저가 입문용 1인승 레이스카 Tubular Space Frame의 비틀림 강성 최적설계 (Optimal Design for Torsional Stiffness of the Tubular Space Frame of a Low-Cost Single Seat Race Car)

  • 장운근
    • 한국산학기술학회논문지
    • /
    • 제15권10호
    • /
    • pp.5955-5962
    • /
    • 2014
  • 일반적으로 고성능의 레이스카나 스포츠카 시장에서 차량의 프레임 설계는 매우 중요한 기술적 요소로 작용하고 있다. 차량의 비틀림 강성은 차량의 코너링 성능에 많은 영향을 주기 때문에 레이스 차량에 있어 우수한 성능의 프레임이라는 것은 높은 비틀림 강성을 가진다는 것을 뜻한다. 본 연구에서는 입문용 포뮬러 레이스카 프레임의 최적 비틀림 강성 설계를 위하여 다구찌 직교배열표를 가진 실험계획법과 유한요소 해석 기술을 이용하였다. 이러한 기법을 통해서 얻은 결과가 초기설계단계에서 보다 14.5%의 무게를 감량함과 동시에 무게 대비 비틀림 강성 10.7%의 개선 효과를 볼 수가 있었다. 따라서 본 연구에서는 직교배열표를 가지는 실험계획법을 이용한 구조해석이 설계 초기단계에서 저가형 레이스 차량에 사용되는 Tubular space frame 설계에 매우 유용함을 나타내고 있다.

Prediction of skewness and kurtosis of pressure coefficients on a low-rise building by deep learning

  • Youqin Huang;Guanheng Ou;Jiyang Fu;Huifan Wu
    • Wind and Structures
    • /
    • 제36권6호
    • /
    • pp.393-404
    • /
    • 2023
  • Skewness and kurtosis are important higher-order statistics for simulating non-Gaussian wind pressure series on low-rise buildings, but their predictions are less studied in comparison with those of the low order statistics as mean and rms. The distribution gradients of skewness and kurtosis on roofs are evidently higher than those of mean and rms, which increases their prediction difficulty. The conventional artificial neural networks (ANNs) used for predicting mean and rms show unsatisfactory accuracy in predicting skewness and kurtosis owing to the limited capacity of shallow learning of ANNs. In this work, the deep neural networks (DNNs) model with the ability of deep learning is introduced to predict the skewness and kurtosis on a low-rise building. For obtaining the optimal generalization of the DNNs model, the hyper parameters are automatically determined by Bayesian Optimization (BO). Moreover, for providing a benchmark for future studies on predicting higher order statistics, the data sets for training and testing the DNNs model are extracted from the internationally open NIST-UWO database, and the prediction errors of all taps are comprehensively quantified by various error metrices. The results show that the prediction accuracy in this study is apparently better than that in the literature, since the correlation coefficient between the predicted and experimental results is 0.99 and 0.75 in this paper and the literature respectively. In the untrained cornering wind direction, the distributions of skewness and kurtosis are well captured by DNNs on the whole building including the roof corner with strong non-normality, and the correlation coefficients between the predicted and experimental results are 0.99 and 0.95 for skewness and kurtosis respectively.

Dynamics of Technology Adoption in Markets Exhibiting Network Effects

  • Hur, Won-Chang
    • Asia pacific journal of information systems
    • /
    • 제20권1호
    • /
    • pp.127-140
    • /
    • 2010
  • The benefit that a consumer derives from the use of a good often depends on the number of other consumers purchasing the same goods or other compatible items. This property, which is known as network externality, is significant in many IT related industries. Over the past few decades, network externalities have been recognized in the context of physical networks such as the telephone and railroad industries. Today, as many products are provided as a form of system that consists of compatible components, the appreciation of network externality is becoming increasingly important. Network externalities have been extensively studied among economists who have been seeking to explain new phenomena resulting from rapid advancements in ICT (Information and Communication Technology). As a result of these efforts, a new body of theories for 'New Economy' has been proposed. The theoretical bottom-line argument of such theories is that technologies subject to network effects exhibit multiple equilibriums and will finally lock into a monopoly with one standard cornering the entire market. They emphasize that such "tippiness" is a typical characteristic in such networked markets, describing that multiple incompatible technologies rarely coexist and that the switch to a single, leading standard occurs suddenly. Moreover, it is argued that this standardization process is path dependent, and the ultimate outcome is unpredictable. With incomplete information about other actors' preferences, there can be excess inertia, as consumers only moderately favor the change, and hence are themselves insufficiently motivated to start the bandwagon rolling, but would get on it once it did start to roll. This startup problem can prevent the adoption of any standard at all, even if it is preferred by everyone. Conversely, excess momentum is another possible outcome, for example, if a sponsoring firm uses low prices during early periods of diffusion. The aim of this paper is to analyze the dynamics of the adoption process in markets exhibiting network effects by focusing on two factors; switching and agent heterogeneity. Switching is an important factor that should be considered in analyzing the adoption process. An agent's switching invokes switching by other adopters, which brings about a positive feedback process that can significantly complicate the adoption process. Agent heterogeneity also plays a important role in shaping the early development of the adoption process, which has a significant impact on the later development of the process. The effects of these two factors are analyzed by developing an agent-based simulation model. ABM is a computer-based simulation methodology that can offer many advantages over traditional analytical approaches. The model is designed such that agents have diverse preferences regarding technology and are allowed to switch their previous choice. The simulation results showed that the adoption processes in a market exhibiting networks effects are significantly affected by the distribution of agents and the occurrence of switching. In particular, it is found that both weak heterogeneity and strong network effects cause agents to start to switch early and this plays a role of expediting the emergence of 'lock-in.' When network effects are strong, agents are easily affected by changes in early market shares. This causes agents to switch earlier and in turn speeds up the market's tipping. The same effect is found in the case of highly homogeneous agents. When agents are highly homogeneous, the market starts to tip toward one technology rapidly, and its choice is not always consistent with the populations' initial inclination. Increased volatility and faster lock-in increase the possibility that the market will reach an unexpected outcome. The primary contribution of this study is the elucidation of the role of parameters characterizing the market in the development of the lock-in process, and identification of conditions where such unexpected outcomes happen.