• Title/Summary/Keyword: Corner feature

Search Result 104, Processing Time 0.033 seconds

Hybrid Retrieval Machine for Recognizing 3-D Protein Molecules (3차원 단백질 분자 인식을 위한 복합 추출기)

  • Lee, Hang-Chan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.5
    • /
    • pp.990-995
    • /
    • 2010
  • Harris corner detector is commonly used to detect feature points for recognizing 2-D or 3-D objects. However, the feature points calculated from both of query and target objects need to be same positions to guarantee accurate recognitions. In order to check the positions of calculated feature points, we generate a Huffman tree which is based on adjacent feature values as inputs. However, the structures of two Huffman trees will be same as long as both of a query and targets have same feature values no matter how different their positions are. In this paper, we sort feature values and calculate the Euclidean distances of coordinates between two adjacent feature values. The Huffman Tree is generated with these Euclidean distances. As a result, the information of point locations can be included in the generated Huffman tree. This is the main strategy for accurate recognitions. We call this system as the HRM(Hybrid Retrieval Machine). This system works very well even when artificial random noises are added to original data. HRM can be used to recognize biological data such as proteins, and it will curtail the costs which are required to biological experiments.

Accurate Camera Calibration Method for Multiview Stereoscopic Image Acquisition (다중 입체 영상 획득을 위한 정밀 카메라 캘리브레이션 기법)

  • Kim, Jung Hee;Yun, Yeohun;Kim, Junsu;Yun, Kugjin;Cheong, Won-Sik;Kang, Suk-Ju
    • Journal of Broadcast Engineering
    • /
    • v.24 no.6
    • /
    • pp.919-927
    • /
    • 2019
  • In this paper, we propose an accurate camera calibration method for acquiring multiview stereoscopic images. Generally, camera calibration is performed by using checkerboard structured patterns. The checkerboard pattern simplifies feature point extraction process and utilizes previously recognized lattice structure, which results in the accurate estimation of relations between the point on 2-dimensional image and the point on 3-dimensional space. Since estimation accuracy of camera parameters is dependent on feature matching, accurate detection of checkerboard corner is crucial. Therefore, in this paper, we propose the method that performs accurate camera calibration method through accurate detection of checkerboard corners. Proposed method detects checkerboard corner candidates by utilizing 1-dimensional gaussian filters with succeeding corner refinement process to remove outliers from corner candidates and accurately detect checkerboard corners in sub-pixel unit. In order to verify the proposed method, we check reprojection errors and camera location estimation results to confirm camera intrinsic parameters and extrinsic parameters estimation accuracy.

Vehicle Detection using Feature Points with Directional Features (방향성 특징을 가지는 특징 점에 의한 차량 검출)

  • Choi Dong-Hyuk;Kim Byoung-Soo
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.42 no.2 s.302
    • /
    • pp.11-18
    • /
    • 2005
  • To detect vehicles in image, first the image is transformed with the steerable pyramid which has independent directions and levels. Feature vectors are the collection of filter responses at different scales of a steerable image pyramid. For the detection of vehicles in image, feature vectors in feature points of the vehicle image is used. First the feature points are selected with the grid points in vehicle image that are evenly spaced, and second, the feature points are comer points which m selected by human, and last the feature points are corner Points which are selected in grid points. Next the feature vectors of the model vehicle image we compared the patch of the test images, and if the distance of the model and the patch of the test images is lower than the predefined threshold, the input patch is decided to a vehicle. In experiment, the total 11,191 vehicle images are captured at day(10,576) and night(624) in the two local roads. And the $92.0\%$ at day and $87.3\%$ at night detection rate is achieved.

Rotated object recognition based on corner feature points in mobile environment (모바일 환경 응용을 위한 코너 특징점 기반의 회전 객체 검출)

  • Kim, Dae-Hwan;Piao, Jin-Chun;Kim, Shin-Dug
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2013.07a
    • /
    • pp.23-26
    • /
    • 2013
  • 최근 모바일 장치의 영상 데이터 처리 능력 확대와 더불어 사용자가 요구하는 다양한 영상 데이터의 효율적인 인식 기술 연구가 요구되어지고 있다. 모바일 환경은 고성능 PC 환경과 달리 저사양의 CPU와 메모리를 탑재하고 있어, 영상에서 원하는 객체를 인식하기 위한 기존의 방법론으로는 사용자 요구를 실시간으로 충족하기 어려운 부분이 존재한다. 이에 모바일 환경에 맞는 객체 인식 방법론의 개발이 요구된다. 모바일 환경에서 실시간으로 객체 인식을 하기 위하여, 본 논문에서는 객체 코너 정보를 이용한 Harris corner detector[1]로부터 객체의 특징점을 추출하고, 이를 바탕으로 하여 영상내의 객체 정보 인식 방법을 제안한다. 제안하는 방법에 의해, 입력 영상에서 객체의 코너 정보를 빠르게 추출, 기존 특징점과의 비교를 통하여 영상 내부의 객체 인식을 진행한다. 일반적으로, 회전된 특징점 객체의 정보는 객체의 회전 정도에 따라 코너 픽셀 색상 정보의 변화가 발생하게 된다. 특징점의 색상값은 객체의 회전 정도에 영향을 받아 주변의 픽셀값과 혼합되는 특성이 존재한다. 본 논문에서는 회전 변경된 픽셀 색상값의 영향을 분석하여, 회전된 객체의 특징점 추출 및 객체 검출에 반영하도록 하여, 영상 내부의 회전된 객체 검출의 수행에 효과적으로 이용될 수 있도록 한다. 특징점의 코너 정보를 이용하여 객체를 인식하는 것은, 객체의 인식률은 다소 감소하더라도 모바일 환경에서 계산량의 감소를 통한 실시간 활용이 가능하도록 한다. 이러한 특성은 저성능 CPU와 메모리에서도 회전된 객체의 인식을 수행할 수 있게 하는데 상당히 효과적이다.

  • PDF

Precise Detection of Coplanar Checkerboard Corner Points for Stereo Camera Calibration Using a Single Frame (스테레오 카메라 캘리브레이션을 위한 동일평면 체커보드 코너점 정밀검출)

  • Park, Jeong-Min;Lee, Jong-In;Cho, Joon-Bum;Lee, Joon-Woong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.7
    • /
    • pp.602-608
    • /
    • 2015
  • This paper proposes an algorithm for precise detection of corner points on a coplanar checkerboard in order to perform stereo camera calibration using a single frame. Considering the conditions of automobile production lines where a stereo camera is attached to the windshield of a vehicle, this research focuses on a coplanar calibration methodology. To obtain the accurate values of the stereo camera parameters using the calibration methodology, precise localization of a large number of feature points on a calibration target image should be ensured. To realize this demand, the idea with respect to a checkerboard pattern design and the use of a Homography matrix are provided. The calibration result obtained by the proposed method is also verified by comparing the depth information from stereo matching and a laser scanner.

The Position Estimation of a Body Using 2-D Slit Light Vision Sensors (2-D 슬리트광 비젼 센서를 이용한 물체의 자세측정)

  • Kim, Jung-Kwan;Han, Myung-Chul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.12
    • /
    • pp.133-142
    • /
    • 1999
  • We introduce the algorithms of 2-D and 3-D position estimation using 2-D vision sensors. The sensors used in this research issue red laser slit light to the body. So, it is very convenient to obtain the coordinates of corner point or edge in sensor coordinate. Since the measured points are normally not fixed in the body coordinate, the additional conditions, that corner lines or edges are straight and fixed in the body coordinate, are used to find out the position and orientation of the body. In the case of 2-D motional body, we can find the solution analytically. But in the case of 3-D motional body, linearization technique and least mean squares method are used because of hard nonlinearity.

  • PDF

Monocular Vision and Odometry-Based SLAM Using Position and Orientation of Ceiling Lamps (천장 조명의 위치와 방위 정보를 이용한 모노카메라와 오도메트리 정보 기반의 SLAM)

  • Hwang, Seo-Yeon;Song, Jae-Bok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.2
    • /
    • pp.164-170
    • /
    • 2011
  • This paper proposes a novel monocular vision-based SLAM (Simultaneous Localization and Mapping) method using both position and orientation information of ceiling lamps. Conventional approaches used corner or line features as landmarks in their SLAM algorithms, but these methods were often unable to achieve stable navigation due to a lack of reliable visual features on the ceiling. Since lamp features are usually placed some distances from each other in indoor environments, they can be robustly detected and used as reliable landmarks. We used both the position and orientation of a lamp feature to accurately estimate the robot pose. Its orientation is obtained by calculating the principal axis from the pixel distribution of the lamp area. Both corner and lamp features are used as landmarks in the EKF (Extended Kalman Filter) to increase the stability of the SLAM process. Experimental results show that the proposed scheme works successfully in various indoor environments.

Euler Angle-Based Global Motion Estimation Model for Digital Image Stabilization (디지털 영상 안정화를 위한 오일러각 기반 전역 움직임 추정 모델)

  • Kwak, Hwy-Kuen;Lyou, Joon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.11
    • /
    • pp.1053-1059
    • /
    • 2010
  • This paper treats the DIS (Digital Image Stabilization) problem subject to base motions such as translation, rotation and zoom. For the local motion estimation from a raw image, the Harris corner detection algorithm is exploited to extract feature points, and comparing those of consecutive images, the zoom ratio (scale factor) is computed. For the global motion estimation, an equivalent model is derived to account for a 3-dimensional composite motion from which the center point and Euler angle can be determined. Finally, the motion compensation follows. To show the effectiveness of the present DIS scheme, experimental results for synthetic images are illustrated.

Distinct Point Detection : Forstner Interest Operator

  • Cho, Woo-Sug
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.13 no.2
    • /
    • pp.299-307
    • /
    • 1995
  • The extraction of distinct points such as corner points and circular features is a basic procedure in digital photogrammetry and computer vision. This paper describes the extraction of image features from the raw images (gray value images), especially Forstner interest corner points. The mathematical model of the Forstner interest operator as well as the behavior in the presence of noise are investigated. Experiments with real images prove the feasibility of the Forstner interest operator in the field of Digital Photogrammetry.

  • PDF

A Study on the Forming Characteristics of Radial Extrusions (레이디얼압출의 성형특성에 관한 연구)

  • 이수형;황병복
    • Transactions of Materials Processing
    • /
    • v.8 no.6
    • /
    • pp.604-611
    • /
    • 1999
  • This paper is concerned with the family of parts that generally feature a central hub with radial protrusions. As opposed to conventional forward and backward extrusion, in which the material flows in a direction parallel to that of the punch or die motion, the material flows perpendicular to the punch motion in radial extrusion. Three variants of radial extrusion of a collar or flange are investigated. Case I involves forcing a cylindrical billet against a flat die, Case II involves deformation against a stationary punch recessed in the lower die, and Case III involves both the upper and lower punches moving together toward the center of the billet. Extensive simulational work is performed with each case to see the process conditions in terms of forging load, balanced and symmetrical flow in the flange. Also, the effect of the gap size and die corner radii to the material flow are investigated. In this study, the forming characteristics of radial extrusion will be considered by comparing the forces, shapes etc. The design factors during radial extrusion are investigated by the rigid-plastic FEM simulation.

  • PDF