• Title/Summary/Keyword: Corn-soybean

Search Result 764, Processing Time 0.024 seconds

Factors Affecting True Metabolizable Energy Determination of Poultry Feedingstuffs V. The Effect of Levels of Metabolizable Energy of Basal Diets on the Apparent Metabolizable Energy and True Metabolizable Energy Values of Corn and Soybean Meal (양계사료의 True Metabolizable Energy측정에 영향하는 요인에 관한 시험 V. 기초사료의 에너지수준이 옥수수와 대두박의 Apparent Metabolizable Energy 및 True Metabolizable Energy가에 미치는 영향)

  • 이영철
    • Korean Journal of Poultry Science
    • /
    • v.11 no.2
    • /
    • pp.109-114
    • /
    • 1984
  • The experiment was made to study the effect of levels of metabolizable energy of basal diets on apparent metabolizable energy (AME) and true metabolizable energy (TME) values of corn and soybean meals. The test materials, corn and soybean meals, were substituted with basal diet at 50% and 30%, respectively. The excreta of fed md unfed birds were collected for 30 hours. The results obtained were as follows; 1. The AME values of corn were not significantly different among treatments (P>0.05) except for 2400 Kcal/13% treatment, The AME values of soybean meals differed significantly between 2,400 Kcal/13% and 2,800 Kcal/15% or 3,000 Kcal/16%, but were not different between 2,400 Kcal/13% and 2,600 Kcal/14 % (probability at 5% level). 2. The energy levels of basal diets did not affect the AME values of corn and soybean meals (P>0.05) except 2,400 Kcal/13% treatment. This fact indicates that it is not necessary to change energy levels of basal diet according to test materials. 3. That the values of standard error of soybean meals were higher than those of corn was resulted from its low level of substitution with basal diet. 4. The TME values of corn showed significant differences (P<0.05) between 2,400Kcal/13% treatment and other treatments but those of soybean meals were not different among all treatments (P>0.05). 5. The reason that the AME values of corn and soybean meals and the TME values of corn reduced significantly in 2,400 Kcal/13% could be explained by the effect of interaction among ingredients in the diet.

  • PDF

Value of palm kernel co-products in swine diets

  • Kim, Sheena;Kim, Byeonghyeon;Kim, Younghoon;Jung, Samooel;Kim, Younghwa;Park, Juncheol;Song, Minho;Oh, Sangnam
    • Korean Journal of Agricultural Science
    • /
    • v.43 no.5
    • /
    • pp.761-768
    • /
    • 2016
  • Recently, swine production costs have increased due to increased feed cost, especially the price of corn and soybean meals. Soybean meal is traditionally an expensive ingredient, but the price of corn has dramatically increased because of increased biofuel production. This change has resulted in the swine industry looking for alternatives in order to reduce feed cost, resulting in decreased production costs. Thus, various alternatives have been used as feed ingredients to replace corn, soybean meal, or other expensive ingredients. One othercandidate may be palm kernel co-products that are a by-product of oil extraction from palm fruits. Palm kernel co-products have not been used in swine diets due to high fiber content and imbalanced amino acids compared with corn and soybean meal. However, recent studies showed that palm kernel co-products did not have any negative effects on growth performance of pigs when they replaced some proportions of corn and soybean meal. In addition, palm kernel co-products may provide some physiological properties to pigs by modifying gut microbiota and/or immunity of pigs, resulting in improvement of growth and health of pigs. Therefore, the value of palm kernel co-products were reviewed as one of the alternatives for corn, soybean meal, or other major ingredients in swine diets.

A Study on the Development of the Seeder for Soybean and Corn (콩.옥수수 육묘용 파종기 개발에 관한 연구)

  • Kim, Dong-Eok;Kim, Hyun-Hwan;Kim, Jong-Goo;Lee, Gong-In;Kim, Sung-Ki;Chang, Yu-Seob
    • Journal of Biosystems Engineering
    • /
    • v.35 no.5
    • /
    • pp.330-335
    • /
    • 2010
  • Soybean (Glycine max Merr.) and corn (Zea mays L.) transplanting has increased because soybean and corn crops cultivated by the direct seeding method were often damaged by wild birds. The purpose of this study is to develop a seeder to sow soybean (Glycine max Merr.) and corn (Zea mays L.) in a plug tray. In order to find out design factors for a metering device of the seeder, metering characteristics on metering hole size and roller speed were experimentally investigated. Soybean (cv. 'Daewon') and corn (cv. 'Mibaekchal') were used as a materials for testing the seeder in this experiment. The metering hole size of roller suitable for Daewonkong and Mibaekchal was determined. Daewonkong was suitable for hole diameter of 10 mm and hole depth of 5.5 mm, and Mibaekcal was suitable for hole diameter of 9 mm and hole depth of 5.5 mm. At a brush length of 4 mm, one grain seeding rates of Daewonkong and Mibaekchal was 99% and 93% respectively. By inducing Mibaekchal to the hole by swing, one grain seeding rate of that increased from 91.9% to 97.7%. When roller speed is 4 m per minut, seeding efficiency of prototype was 110 sheets per hour.

Evaluation of Twice Decorticated Sunflower Meal as a Protein Source Compared with Soybean Meal in Pig Diets

  • Cortamira, O.;Gallego, A.;Kim, S.W.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.13 no.9
    • /
    • pp.1296-1303
    • /
    • 2000
  • A series of four experiments was conducted to compare nutritional values of decorticated sunflower meals against soybean meal, in diets for pigs from weaning (Exp. 1 and 2) to finishing (Exp. 3 and 4). All experimental diets were prepared compensating for the energy content by using vegetable oil and the lysine content was matched using synthetic L-Lysine HCl. Twenty-one day old pigs were fed either corn-soybean meal based diet (CSBM) or corn- twice-decorticated sunflower meal based diet (CDSM) for four weeks (Exp. 1). There was no difference in performances between treatment groups. In Exp. 2, corn-non-decorticated sunflower meal based diet (CNSM) was added to the existing two treatments. Twenty-one day old pigs were fed three experimental diets for four weeks. Pigs fed CNSM had a lower weight gain and feed intake than other treatments (p<0.05). There was no difference between pigs fed CSBM and CDSM (Exp. 2). Growth performance of growing pigs was also greater (p<0.05) in pigs fed corn starch-twice- decorticated sunflower meal based diet (CSDSM) than pigs fed corn starch-non-decorticated sunflower meal based diet (CSNSM) during the eight week feeding trial (Exp. 3). There was no difference between pig fed corn starch-soybean meal based diet (CSSBM) and CSDSM (Exp. 3). In Exp. 4, growing pigs were fed three experimental diets (CSBM, CDSM, and barley-twice- decorticated sunflower meal based diet; BDSM) until the slaughter. There was no difference in growth performance of pigs during growing and finishing periods among treatments. However, pigs fed CSBM had a higher carcass dressing percentage (p<0.05) than pigs fed CDSM and BDSM. Pigs fed BDSM diet had a lower fat tissue percentage than other groups (p<0.05). The twice-decorticated sunflower meal can be used as a substitute for soybean meal in pig diets. The performances of piglets and growing-finishing pigs were not affected when soybean meal was replaced by twice-decorticated sunflower meal. This substitution needs the contribution of synthetic lysine and vegetable oil as sources of complementary nutrients to match the nutrient profile.

Effects of Partial Replacement of Corn Grain and Soybean Meal with Agricultural By-Product Feeds on In Vitro Rumen Fermentation Characteristics and Optimum Levels of Mixing Ratio (농산부산물을 이용한 In Vitro 반추위발효 특성 및 적정 배합수준을 통한 옥수수 및 대두박 대체 효과)

  • Park, Joong-Kook;Lim, Dong-Hyun;Kim, Sang-Bum;Ki, Kwang-Seok;Lee, Hyun-June;Kwon, Eung-Gi;Cho, Won-Mo;Kim, Chang-Hyun
    • Journal of Animal Science and Technology
    • /
    • v.53 no.5
    • /
    • pp.441-450
    • /
    • 2011
  • This study was conducted to determine the effects of partial replacement of corn grain and soybean meal with agricultural by-product feeds on in vitro rumen fermentation characteristics and optimum levels of mixing ratio. The agricultural by-products to examine the effectiveness of the partial replacement of concentrate were wheat bran, corn gluten feed, bakery waste, soybean curd, rice bran, green kernel rice, soybean hull, distillers' grain, and mushroom substrate. In the first experiment, in vitro ruminal fermentation characteristics of feedstuffs were evaluated at 0, 3, 6, 12, 24, and 48 hours after incubation. In the second experiment, fermentation characteristics were investigated with green kernel rice and soybean curd which replaced corn grain or soybean meal. Feed were formulated with 40% corn grain + 20% soybean meal (T1), 40% corn grain + 17.5% soybean meal + 2.5% soybean curd (T2), 25% corn grain + 20% soybean meal + 15% green kernel rice (T3), and 30% corn grain + 15% soybean meal + 6% green kernel rice + 9% soybean curd (T4), respectively, with forage source of 10% alfalfa hay, 20% timothy hay, and 10% corn silage as fed-basis. In 24 and 48 hour cultivations, T4 showed significantly lower pH compared to T1, whereas in 3 and 24 hour cultivations, T4 showed significantly higher DM degradation compared to T1. In addition, the gas production of T3 was also higher than T1 (p<0.05). Overall results of the present experiments indicated that green kernel rice and soybean curd as agricultural by-products have the possibility of partial replacements of corn grain and soybean meal.

Safening Mode of Action of 1, 8-Naphthalic Anhydride on Corn and Soybean Against Herbicide Bensulfuron and Imazaquin (제초제(除草劑) bensulfuron과 imazaquin에 대한 1, 8-naphthalic anhydride(NA)의 옥수수와 콩에 대한 약해경감작용기구(藥害輕減作用機構))

  • Hwang, I.T.;Choi, J.S.;Kim, J.S.;Cho, K.Y.;Chun, J.C.
    • Korean Journal of Weed Science
    • /
    • v.14 no.1
    • /
    • pp.8-15
    • /
    • 1994
  • The mode of safening action and potency of the 1, 8-naphthalic anhydride(NA) were investigated in corn(Zea mays) and soybean(Glycine max) treated with herbicide bensulfuron[2-{{{{{(4,6-dimethoxy-2-pyrimidinyl)amino}carbonyl}amino}sulfonyl}methyl}benzoic acid] and imazaquin[2-{4,5-dihydro-4-methyl-4-(1-methylethyl)-5-oxo-1H-imidazol-2-yl} 3-quinolinonecarboxylic acid]. Seed dressing with 0.2%(w/w) NA showed successful protection in corn against injury from herbicide bensulfuron and imazaquin but not in soybean. Safening factors of NA against bensulfuron and imazaquin were 10.2 and 5.0, respectively, in corn, while they were both 1.3 in soybean. In vivo, Glutathione-S-transferase(GST) activity of NA-treated corn and soybean increased 1.8-and 1.3-fold, respectively, but the activity was not affected by the herbicides in vitro. Acetolactate synthase(ALS) levels of NA-treated corn was increased 1.3-fold, but not changed in soybean. Tolerance of ALS activity to the herbicides was slightly greater in ALS obtained from NA-treated corn than that from the untreated, whereas the difference was not found in soybean. A significant increase of ACCase due to NA occurred in corn, but not in soybean. The herbicides did not affect in vitro ACCase activity.

  • PDF

Ingestive Behavior and Nitrogen Balance of Confined Santa Ines Lambs Fed Diets Containing Soybean Hulls

  • Bastos, Milena Patricia Viana;Carvalho, Gleidson Giordano Pinto De;Pires, Aureliano Jose Vieira;Silva, Roberio Rodrigues;Filho, Antonio Eustaquio;Santos, Edileusa De Jesus Dos;Chagas, Daiane Maria Trindade;Barroso, Daniele Soares;Filho, George Abreu
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.1
    • /
    • pp.24-29
    • /
    • 2014
  • The objective of this study was to assess the effect of substituting corn with soybean hulls on the ingestive behavior and nitrogen balance of Santa Ines lambs. A total of 25 lambs with an initial body weight of $20{\pm}2$ kg at approximately six months of age, sheltered individually in stalls ($1.10m{\times}1.0m$), considering an entirely casual experimental delineation. Soybean hulls were substituted for corn at 0, 250, 500, 750, and 1,000 g/kg of dry matter (DM). The time spent feeding, ruminating, masticating, and resting was not affected by the substitution of corn with soybean hulls. In fact, the feeding efficiency in g DM/h and the rumination efficiency in g DM/bolus increased linearly with soybean hull substitution in the feed. Although the nitrogen balance was not altered by the use of soybean hulls as a substitute for corn in the diets of Santa Ines lambs, the N ingested and N digested expressed in g/d, N retained as a percentage of that ingested, and N retained as a percentage of that digested displayed quadratic behavior. In conclusion, corn can be substituted with soybean hulls up to 1,000 g/kg of dry matter in the concentrate, without changing the ingestive behavior and nitrogen balance.

Individual or combinational use of phytase, protease, and xylanase for the impacts on total tract digestibility of corn, soybean meal, and distillers dried grains with soluble fed to pigs

  • Adsos Adami Passos;Vitor Hugo Cardoso Moita;Sung Woo Kim
    • Animal Bioscience
    • /
    • v.36 no.12
    • /
    • pp.1869-1879
    • /
    • 2023
  • Objective: This study was to evaluate the effects of individual or combinational use of phytase, protease, and xylanase on total tract digestibility of corn, soybean meal, and distillers dried grains with soluble (DDGS) fed to pigs. Methods: Each experiment had four 4×4 Latin squares using 16 barrows. Each period had 5-d adaptation and 3-d collection. All experiments had: CON (no enzyme); Phy (CON+phytase); Xyl (CON+xylanase); Pro (CON+protease); Phy+Xyl; Phy+Pro, Xyl+Pro, Phy+Xyl+Pro. Each Latin square had 'CON, Phy, Xyl, and Phy+Xyl'; 'CON, Phy, Pro, and Phy+Pro'; 'CON, Pro, Xyl, and Xyl+Pro'; and 'Phy+Xyl, Phy+Pro, Xyl+Pro, Phy+Xyl+Pro'. Results: The digestible energy (DE), metabolizable energy (ME), and nitrogen retention (NR) of corn were not affected by enzymes but the apparent total tract digestibility (ATTD) of phosphorus (P) was improved (p<0.01) by Phy. The DE and ATTD dry matter (DM) in soybean meal were increased (p<0.05) by Phy+Pro and the ATTD P was improved (p<0.01) by Phy, Phy+Pro, and Phy+Xyl. The DE, ME, and ATTD DM in DDGS were improved (p<0.05) by Phy+Xyl and the ATTD P was improved (p<0.01) by Phy, Phy+Pro, and Phy+Xyl. Conclusion: Phytase individually or in combination with xylanase and protease improved the Ca and P digestibility of corn, soybean meal, and DDGS, from the hydrolysis of phytic acid. The supplementation of protease was more effective when combined with phytase and xylanase in the soybean meal and DDGS possibly due to a higher protein content in these feedstuffs. Xylanase was more effective in DDGS diets due to the elevated levels of non-starch polysaccharides in these feedstuffs. However, when xylanase was combined with phytase, it demonstrated a higher efficacy improving the nutrient digestibility of pigs. Overall, combinational uses of feed enzymes can be more efficient for nutrient utilization in soybean meal and DDGS than single enzymes.

Evaluation of Chinese Brown Rice as an Alternative Energy Source in Pig Diets

  • Piao, X.S.;Li, Defa;Han, In K.;Chen, Y.;Lee, J.H.;Wang, D.Y.;Li, J.B.;Zhang, D.F.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.15 no.1
    • /
    • pp.89-93
    • /
    • 2002
  • A total of six crossbred barrows ($Duroc{\times}Landrace{\times}Large$ White, $44.17{\pm}1.94kg$ BW) were housed conducted to evaluate apparent fecal digestibilities of Brown Rice (BR) as an alternative energy source in growing pigs. Pigs were housed individually on metabolism crate on the basis of body weight. Four treatments contained: 1) 100% of corn-soybean meal (C100; Control diet), 2) 75% of corn-soybean meal diet plus 25% of corn meal (C25), 3) 100% of brown rice-soybean meal diet (BR100), 4) 75% of brown rice-soybean meal diet plus 25% of brown rice meal (BR25). Brown rice has an excellent gross energy and crude protein composition compared to corn. The BR used had 3,801 kcal of gross energy/kg, 8.0% crude protein, 2.6% of ether extract, 0.035% calcium and 0.35% total phosphorus. The best digestibilities of energy (87.75%), DM (81.71%) and CP (78.57%) were observed in BR 100 group and the worst were found in Corn 25 group. The nutrient digestibility was not significantly different in most nutrients. Through this experiment, BR appeared a good alternative energy source that can replace corn yellow to 100% in growing pigs. Therefore, the price relationship between corn and BR may provide an excellent opportunity for pork producers to use BR in order to reduce feed costs provided that diet has been balanced for digestible amino acids.

Effect of Intercropped Corn and Soybean Silage on Nutritive Values, in vitro Ruminal Fermentation, and Milk Production of Holstein Dairy Cows

  • Kang, Juhui;Song, Jaeyong;Marbun, Tabita Dameria;Kwon, Chan Ho;Kim, Eun Joong
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.37 no.3
    • /
    • pp.216-222
    • /
    • 2017
  • This study was conducted to examine the effect of corn (Zea mays L.) - soybean (Glycine max L.) silage prepared by intercropping method on the nutritive value of the silage, in vitro rumen fermentation characteristics, dry matter degradability, as well as milk yield and milk composition of dairy cows. In a couple of experiments intercropped corn-soybean silage (CSBS) was compared with corn silage (CS) and/or Italian ryegrass hay (IRG). Numerically, CSBS had higher crude protein, ether extract, and lactic acid contents compared to CS. In vitro rumen fermentation analysis demonstrated that up to a 24-h incubation period, both CS and CSBS showed higher total gas production, ammonia N concentration, and dry matter degradability compared to IRG (p<0.05). The investigation on animals was conducted in a commercial dairy farm located in Gyeongju, South Korea, employing 42 Holstein cows that were divided into 2 group treatments: CS and CSBS in a completely randomized design. Although no significant difference was observed in milk yield, animals fed on CSBS showed significantly higher milk protein (p<0.05) and milk fat content (p<0.01), compared to animals fed on CS. Taken together, our findings indicate that corn-soybean silage that is cultivated, harvested, and prepared through intercropping can improve the protein content of the silage, and can also enhance in vitro rumen fermentation, dry matter degradability, and performance of dairy cattle.