• 제목/요약/키워드: Corn production

검색결과 1,170건 처리시간 0.031초

Corn stover usage and farm profit for sustainable dairy farming in China

  • He, Yuan;Cone, John W.;Hendriks, Wouter H.;Dijkstra, Jan
    • Animal Bioscience
    • /
    • 제34권1호
    • /
    • pp.36-47
    • /
    • 2021
  • Objective: This study determined the optimal ratio of whole plant corn silage (WPCS) to corn stover (stems+leaves) silage (CSS) (WPCS:CSS) to reach the greatest profit of dairy farmers and evaluated its consequences with corn available for other purposes, enteric methane production and milk nitrogen efficiency (MNE) at varying milk production levels. Methods: An optimization model was developed. Chemical composition, rumen undegradable protein and metabolizable energy (ME) of WPCS and CSS from 4 cultivars were determined to provide data for the model. Results: At production levels of 0, 10, 20, and 30 kg milk/cow/d, the WPCS:CSS to maximize the profit of dairy farmers was 16:84, 22:78, 44:56, and 88:12, respectively, and the land area needed to grow corn plants was 4.5, 31.4, 33.4, and 30.3 ha, respectively. The amount of corn available (ton DM/ha/yr) for other purposes saved from this land area decreased with higher producing cows. However, compared with high producing cows (30 kg/d milk), more low producing cows (10 kg/d milk) and more land area to grow corn and soybeans was needed to produce the same total amount of milk. Extra land is available to grow corn for a higher milk production, leading to more corn available for other purposes. Increasing ME content of CSS decreased the land area needed, increased the profit of dairy farms and provided more corn available for other purposes. At the optimal WPCS:CSS, MNE and enteric methane production was greater, but methane production per kg milk was lower, for high producing cows. Conclusion: The WPCS:CSS to maximize the profit for dairy farms increases with decreased milk production levels. At a fixed total amount of milk being produced, high producing cows increase corn available for other purposes. At the optimal WPCS:CSS, methane emission intensity is smaller and MNE is greater for high producing cows.

옥수수와 보리에서 Fusarium graminearum의 8-ketotrichothecenes 생성 (Production of 8-ketotrichothecenes by Fusarium graminearum on Corn and Barley)

  • 서영수;서정아;손황배;이인원
    • 한국식물병리학회지
    • /
    • 제14권5호
    • /
    • pp.418-424
    • /
    • 1998
  • The production of 8-ketotrichothecenes, deoxynivalenol (DON), nivalenol (NIV), and their monoacetyl derivatives was studied in rice and corn cultures using 8 isolates of Fusarium graminearum which were obtained from corn and barley samples. Higher concentrations of trichothecenes were produced on rice than corn, and production of the toxins on rice was enhanced by growing the fungi at $25^{\circ}C$. The isolates were used for evaluation of toxin production and pathogenicity after artificial inoculation to 5 corn and 3 barley cultivars. The kinds and the relative amounts of trichothecenes produced in cultures were consistent with those in infected kernels of corn and barley with some exceptions. As for DON chemotypes, the ratios of 15-acetyl-DON to 3-acetyl-DON were varied among the pathogen-cultivar interactions. The corn and barley cultivars showed the significant differences of resistance to the Fusarium isolates in disease severity and seedling blight, and resistance ranking to the different isolates was varied. However, significant correlations were observed between the total concentrations of trichothecenes in infected kernels of corn and barley and pathogenicities of the Fusarium isolates to the hosts.

  • PDF

Causal Relationship among Bioethanol Production, Corn Price, and Beef Price in the U.S.

  • Seok, Jun Ho;Kim, GwanSeon;Kim, Soo-Eun
    • 자원ㆍ환경경제연구
    • /
    • 제27권3호
    • /
    • pp.521-544
    • /
    • 2018
  • This paper investigates the impact of ethanol mandate on the price relationship between corn and beef using the monthly time-series data from January 2003 through December 2013. In addition, we examine the non-linearity in ethanol, corn, and beef markets. Based on the threshold cointegration test, we find the symmetric relationship in pairs with ethanol production-corn price and ethanol production-beef price whereas there is the asymmetric relationship between prices of corn and beef. Employing the threshold vector error correction and vector error correction models, we also find that the corn price in the U.S is caused by both ethanol production and beef price in a long-run when the beef price is relatively high. On the other hand, the corn price does not cause both ethanol production and beef price in the long run. Findings from this study imply that demanders for corn such as ethanol and beef producers have price leadership on corn producers.

Optimum Harvest Time for High Quality Seed Production of Sweet and Super Sweet Corn Hybrids

  • Lee Suk Soon;Yun Sang Hee;Seo Jung Moon
    • 한국작물학회지
    • /
    • 제49권5호
    • /
    • pp.373-380
    • /
    • 2004
  • The production of sweet (su) and super sweet corns (sh2) has been economically feasible in Korea in recent years. Major factors limiting super sweet corn production are low germination and low seedling vigor. Since seed quality is closely related to seed maturity, the optimum harvest time for the seed production of sweet and super sweet corns was studied and the quality of seeds with varying maturities was investigated in 2001 and 2002 cropping seasons. The parents of the sweet corn seeds were Hybrid Early Sunglow and 'Golden Cross Bantam 70' and those of super sweet corn were Xtrasweet 82 and 'For­tune'. Seeds were harvested at 21, 28, 35, 42, 49, and 56 days after silking (DAS). As the seeds developed, seed weight of sweet corn increased and the seed moisture content decreased faster than that of super sweet corn. Germination rates of sweet corn seeds harvested 21 and 28 DAS at $25^{\circ}C$ and emergence rates in the cold soil test were significantly lower than those of seeds harvested after 42 DAS in both years. Although the germination rates of super sweet corn seeds with varying maturities showed similar patterns as sweet corn seeds at $25^{\circ}C$, the emergence rate of super sweet corn seeds in cold soil test continuously increased with seed maturity. This suggests that seed quality of super sweet corn should be tested in a cold soil test to estimate field emergence. As the seeds developed, leakage of total sugars and electrolytes from the both sweet and super sweet corn seeds decreased up to 42 or 49 DAS. The $\alpha-amylase$ activities of both sweet and super sweet corn seeds increased with seed maturity from 21 to 35 or 49 DAS depending on genotype and year. The optimum harvest time for the seed production of sweet corn was 42 DAS and 49 DAS for super sweet corn considering emergence rate and plumule dry weight in the cold soil test, leakage of sugars and electrolytes from the seeds, and $\alpha-amylase$ activity.

Simultaneous Saccharification and Fermentation of Ground Corn Stover for the Production of Fuel Ethanol Using Phanerochaete chrysosporium, Gloeophyllum trabeum, Saccharomyces cerevisiae, and Escherichia coli K011

  • Vincent, Micky;Pometto III, Anthony L.;Leeuwen, J. (Hans) Van
    • Journal of Microbiology and Biotechnology
    • /
    • 제21권7호
    • /
    • pp.703-710
    • /
    • 2011
  • Enzymatic saccharification of corn stover using Phanerochaete chrysosporium and Gloeophyllum trabeum and subsequent fermentation of the saccharification products to ethanol by Saccharomyces cerevisiae and Escherichia coli K011 were achieved. Prior to simultaneous saccharification and fermentation (SSF) for ethanol production, solid-state fermentation was performed for four days on ground corn stover using either P. chrysosporium or G. trabeum to induce in situ cellulase production. During SSF with S. cerevisiae or E. coli, ethanol production was the highest on day 4 for all samples. For corn stover treated with P. chrysosporium, the conversion to ethanol was 2.29 g/100 g corn stover with S. cerevisiae as the fermenting organism, whereas for the sample inoculated with E. coli K011, the ethanol production was 4.14 g/100 g corn stover. Corn stover treated with G. trabeum showed a conversion 1.90 and 4.79 g/100 g corn stover with S. cerevisiae and E. coli K011 as the fermenting organisms, respectively. Other fermentation co-products, such as acetic acid and lactic acid, were also monitored. Acetic acid production ranged between 0.45 and 0.78 g/100 g corn stover, while no lactic acid production was detected throughout the 5 days of SSF. The results of our experiment suggest that it is possible to perform SSF of corn stover using P. chrysosporium, G. trabeum, S. cerevisiae and E. coli K011 for the production of fuel ethanol.

한국의 녹말 산업 발달사 (History of Korean Starch Industry)

  • 박연성
    • 식품과학과 산업
    • /
    • 제51권1호
    • /
    • pp.45-60
    • /
    • 2018
  • The starch industry in Korea had been based on sweet potato and potato for long time to produce starches which were used for mainly starch noodle such as cellophane noodle. Because of the poor storage stability, high price, and fluctuation of production by year and year of potatoes, the raw material for the production of starch had been changed to corn in 1970s. Along with this, the mass production system had been established, which enabled the production of various starch-related products including modified starches for food, textile, paper, and other industrial uses, starch sweetners, high fructose corn syrup, and gelatinized starch. In this paper, a brief background of corn industry in Korea has been described. The production of starch from corn has been emphasized and the future of corn industry in relation with GMO has been suggested.

Chemical composition of barley and co-products from barley, corn, and wheat produced in South-East Asia or Australia

  • Natalia S. Fanelli;Leidy J. Torres-Mendoza;Jerubella J. Abelilla;Hans H. Stein
    • Animal Bioscience
    • /
    • 제37권1호
    • /
    • pp.105-115
    • /
    • 2024
  • Objective: A study was conducted to determine the chemical composition of barley and co-products from barley, corn, and wheat produced in South-East Asia or Australia, and to test the hypothesis that production area or production methods can impact the chemical composition of wheat co-products. Methods: Samples included seven barley grains, two malt barley rootlets, one corn gluten feed, one corn gluten meal, one corn bran, eight wheat brans, one wheat mill mix, and four wheat pollards. All samples were analyzed for dry matter, gross energy, nitrogen, amino acids (AA), acid hydrolyzed ether extract, ash, minerals, starch, and insoluble dietary fiber and soluble dietary fiber. Malt barley rootlets and wheat co-products were also analyzed for sugars. Results: Chemical composition of barley, malt barley rootlets, and corn co-products were in general similar across countries. Wheat pollard had greater (p<0.05) concentrations of tryptophan, magnesium, and potassium compared with wheat bran, whereas wheat bran had greater (p<0.05) concentration of copper than wheat pollard. There were no differences in chemical composition between wheat bran produced in Australia and wheat bran produced in Thailand. Conclusion: Intact barley contains more starch, but fewer AA, than grain co-products. There were only few differences in the composition of wheat bran and wheat pollard, indicating that the two ingredients are similar, but with different names. However, corn gluten meal contains more protein and less fiber than corn bran.

Potential of four corn varieties at different harvest stages for silage production in Malaysia

  • Nazli, Muhamad Hazim;Halim, Ridzwan Abdul;Abdullah, Amin Mahir;Hussin, Ghazali;Samsudin, Anjas Asmara
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제32권2호
    • /
    • pp.224-232
    • /
    • 2019
  • Objective: Apart from various climatic differences, corn harvest stage and varieties are two major factors that can influence the yield and quality of corn silage in the tropics. A study was conducted to determine the optimum harvest stage of four corn varieties for silage production in Malaysia. Methods: Corn was harvested at four growth stages; silking, milk, dough, and dent stages from four varieties; Sweet Corn hybrid 926, Suwan, breeding test line (BTL) 1 and BTL 2. Using a split plot design, the treatments were then analysed based on the plant growth performance, yield, nutritive and feeding values followed by a financial feasibility study for potential commercialization. Results: Significant differences and interactions were detected across the parameters suggesting varying responses among the varieties towards the harvest stages. Sweet Corn was best harvested early in the dough stage due to high dry matter (DM) yield, digestible nutrient, and energy content with low fibre portion. Suwan was recommended to be harvested at the dent stage when it gave the highest DM yield with optimum digestible nutrient and energy content with low acid detergent fibre. BTL 1 and BTL 2 varieties can either be harvested at dough or dent stages as the crude protein, crude fibre, DM yield, DM content, digestible nutrient and energy were not significantly different at either stage. Further financial analysis showed that only Sweet Corn production was not financially feasible while Suwan had the best financial appraisal values among the grain varieties. Conclusion: In conclusion, only the grain varieties tested had the potential for silage making according to their optimum harvest stage but Suwan is highly recommended for commercialization as it was the most profitable.

Evaluation of Corn Production Based on Different Climate Scenarios

  • Twumasi, George Blay;Choi, Kyung-Sook
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2016년도 학술발표회
    • /
    • pp.518-518
    • /
    • 2016
  • Agriculture is the lifeblood of the economy in Ghana, employs about 42% of the population work force and accounts for 30% of the Gross Domestic Product (GDP). Corn (maize) is the major cereal crop grown as staple food under rain fed conditions, covers over 92% of the total agricultural area, and contributes 54% of the caloric intake. Issues of hunger and food insecurity for the entire nation are associated with corn scarcity and low production. The climate changes are expected to affect corn production in Ghana. This study evaluated variations of corn yields based on different climate conditions of rain-fed area in the Dangbe East District of Ghana. AquaCrop model has been used to simulate corn growing cycles in study area for this purpose. The main goal for this study was to predict yield of corn using selected climatic parameters from 1992 to 2013 using different climate scenarios. The Model was calibrated and validated using observed field data, and the simulated grain yields matched well with observed values for the season under production giving an R squared (R2)of 0.93 and Nash-Sutcliff Error(NSE) of 0.21. Study results showed that rainfall reduction in the range of -5% to -20% would reduce the yield from 1.315ton/ha to 0.421ton/ha (-21. 3%) whereas increasing temperature from 1% to 7% would result in the maximum yield reduction of -20.6% (1.315 to 1.09 ton/ha.). On the other hand, increasing rainfall from 5-20% resulted in yield increment of 68% (1.315-2.209 ton/ha) and decreasing temperature produce 7% increase in yield ( 1.315 to 1.401ton/ha). These results provide useful information to adopt strategies by the Government of Ghana and farmers for improving national food security under climate change.

  • PDF

옥수수 가공방법 및 두께가 in situ 건물 분해율과 in vitro 메탄 발생에 미치는 영향 (Effects of Processing Methods of Corn and their Thickness on in situ Dry Matter Degradability and in vitro Methane Production)

  • 김도형;이창현;우양원;;김종남;조광현;장선식;김경훈
    • 한국초지조사료학회지
    • /
    • 제37권4호
    • /
    • pp.308-314
    • /
    • 2017
  • 본 연구에서는 옥수수의 가공방법 및 옥수수의 두께의 차이가 반추위 in situ 소화율 및 in vitro 반추위 발효와 메탄 발생에 미치는 영향에 대하여 알아보고자 실시하였다. Micronized corn(2.5 mm thickness) 처리구는 다른 처리구들에 비하여 in situ 48시간 건물 분해율이 모든 배양시간대에서 높게(P<0.05) 나타났다. 반면, steam flaked corn(3.3 mm thickness) 처리구는 모든 배양시간대에서 가장 낮은(P<0.05) in situ 건물 분해율을 보였다. 반추위 내에서 미생물에 의해 분해되는 b fraction은 이와 상반되는 결과인 steam flaked corn(3.1 mm thickness)과 steam flaked corn(3.3 mm thickness) 처리구에서 높게(P<0.05) 나타났다. b fraction이 반추위를 통과하는 속도인 건물 분해상수 k값은 micronized corn(2.5 mm thickness) 처리구에서 가장 높게 (P<0.05) 나타났고 steam flaked corn(3.3 mm thickness) 처리구에서 가장 낮게 (P<0.05) 나타났다. 반추위내 시간당 통과속도를 0.05로 적용한 유효 건물 분해도는 건물 분해상수와 유사하게 micronized corn(2.5 mm thickness) 처리구에서 가장 높게 (P<0.05), steam flaked corn(3.3 mm thickness) 처리구에서 가장 낮게(P<0.05) 나타났다. In vitro 반추위 48시간 건물 소실율은 micronized corn(2.5 mm thickness) 처리구에서 가장 높은 경향을(P=0.088) 보인 반면 steam flaked corn 처리구들 사이에서는 두께에 따른 건물 소실율의 상관관계는 나타나지 않았다. 총 가스발생량 및 메탄 발생량에 있어서도 건물 소실율과 같은 결과인 micronized corn(2.5 mm thickness) 처리구에서 가장 높게 나타났으며(P=0.001), 총 휘발성지방산은 steam flaked corn(2.9 mm thickness)의 처리구에서 가장 높게 나타났으나(P=0.015) 나머지 처리구들에서는 유의적인 차이를 보이지 않았다. aectate: propionate의 비율 또한 steam flaked corn(2.9 mm thickness)의 처리구에서 가장 높게, micronized corn(2.5 mm thickness) 처리구에서 가장 낮게 나타났다(P=0.008). 본 연구의 결과를 종합하면 steam flaked corn 처리구들에서 in vitro 휘발성지방산 농도에 있어 in situ 반추위내 건물 분해상수와 유효 건물 분해도의 결과와 비교하여 상관관계가 나타나지 않은 결과로 유추해 보면 옥수수 가공방법에 의한 두께의 차이는 반추위 메탄 발생량에 영향을 미치지 않은 것으로 판단된다.