• Title/Summary/Keyword: Corn Grain

Search Result 237, Processing Time 0.026 seconds

Comparison of Kernel Sample Preparation Methods at Different Grain Filling Periods for Determining Pericarp Thickness in Super Sweet and Waxy Corn Hybrids (시료 준비 방법에 따른 등숙 시기별 초당 및 찰옥수수 교잡종의 과피 두께 비교)

  • Han, Seong-Jin;Oh, Tae-Yeung;Kang, Min-jeong;Kang, Jong-won;Wang, Seung-hyun;Park, Tai-choon;Kang, Geon;Chung, Jong-Wook;So, Yoon-Sup
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.64 no.2
    • /
    • pp.102-108
    • /
    • 2019
  • Pericarp thickness of vegetable corns such as sweet and waxy corn is one of the crucial traits, contributing to their edible quality. This study was carried out to compare the pericarp thickness of super sweet and waxy corn hybrids measured with kernel samples prepared using different methods at different grain filling periods. The samples comprised excised pericarp from dried, frozen (at $-4^{\circ}C$), and fresh kernels. Analysis of variance performed separately on super sweet and waxy corn hybrids indicated a significant three-way interaction among cultivars, kernel sample preparation methods, and days after pollination (DAP). Dried samples of super sweet corn hybrids presented reasonably stable pericarp thickness measurements during grain filling, while all the sample preparation methods fluctuated less as grains of waxy corn hybrids matured. Waxy corn is best consumed at around 24 days after pollination. Pericarp thickness of waxy kernel samples regardless of preparation methods investigated was the same at 24 DAP with a few exceptions. Overall, the common method of drying kernel samples before pericarp excision can provide reliable data for estimating the tenderness of vegetable corn hybrids.

Comparison of Growth Characteristics and General Component Content of Corn According to the Sowing Date in the Central Region of Korea

  • Youngchul Yoo;Mi-Jin Chae;Seuk Ki Lee
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.97-97
    • /
    • 2022
  • The yield characteristics of corn for feed by sowing period and the crude protein, crude fat, and coarse flour contents of grain in the harvesting period were compared. The varieties are Kwangpyeongok(KPO), Dapyeongok(DPO) and Pyeonggangok(PGO), and cultivation was tested by the National Food Engineering Department and the Central Crop Department. It was sown at a planting distance of 70×25cm on April 15, June 14, and July 15, 2021, and the amount of fertilizer was applied through soil inspection. For the growth characteristics, plant height, biomass and grain weight were investigated after 50 days of sowing, and general components were analyzed by drying and pulverizing each seed. Compared to the results of sowing in April, which is the right time to sow corn, all three varieties sown on June 14 showed an increase in biomass. In the case of sowing on July 15, the fresh weight of KPO and DPO decreased, and the grain weight of KPO and PGO decreased by 10-20% compared to the sowing in April. There was no significant difference in the crude protein content of grain according to the sowing seasons in April and June, but decreased in the corn sown in July. The crude fat content was highest in KPO sown on June 14 and DPO sown on July 15. Combining the yield and general composition results, it is thought that the cultivation of corn for feed in Suwon in the central part can be sown by mid-June.

  • PDF

Effects of Alfalfa and Brown Mid-rib Corn Silage and Level of Forage Neutral Detergent Fiber on Animal Performance of Lactating Cows in Michigan

  • Min, Doo-Hong;Bucholtz, Herb;Naasz, Paul
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.3
    • /
    • pp.373-377
    • /
    • 2007
  • Alfalfa silage and corn silage are the major dairy feeds in most dairy operations in Michigan, USA. In recent years, the need to improve digestible fiber and dry matter intake of forages to meet the nutrient requirements of high yielding dairy cows and the willingness to plant corn specifically for silage has led plant breeders to focus on the brown mid-rib (BMR) trait. The objective of this study was to investigate the effect of different ratio of alfalfa to BMR corn silage and ration level of forage neutral detergent fiber (NDF) on animal performance of lactating cows in the Upper Peninsula of Michigan. This study was conducted at the Upper Peninsula Experiment Station of Michigan State University in Chatham, Michigan, USA. Two different ratios of forage type (high alfalfa silage/low BMR corn silage, AS, and high BMR corn silage/low alfalfa silage, BMRCS) and two different dietary NDF contents (27% NDF, 27 = low forage/high grain feeding, and 33% NDF, 33 = high forage/low grain feeding) were used. The experimental design was a $4{\times}4$ Latin Square with 20 milking cows (12 multiparous and 8 primiparous). This trial had four 21-day periods with 14 d adaptation and 7 d data collection. Milk yield and body condition score (BCS) on the AS-27, BMRCS-27 and BMRCS-33 treatments were significantly (p<0.05) higher than on the AS-33 treatment. Dry matter intake of the AS-27 and BMRCS-27 treatments was significantly (p<0.05) higher than for the AS-33 and BMRCS-33 treatments. Milk urea nitrogen (MUN) on the AS-33 treatment was significantly (p<0.05) higher than on the other diet treatments. A key finding of this study was that the BMRCS-33 (higher amounts of brown mid-rib corn silage than alfalfa silage, high forage and low grain feeding diet at 33% NDF) led to the equal highest milk production whilst having the equal lowest dry matter intake. This study demonstrated that the diet with higher ratio of highly digestible NDF forage such as brown mid-rib corn silage to alfalfa silage could lower grain feeding in the ration.

Growth and Yield Performance in no-till Cultivation of sugary and shrunken-2 Corn Hybrids

  • Lee, Myoung-Hoon
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.47 no.5
    • /
    • pp.384-389
    • /
    • 2002
  • No-tillage (NT) practice for corn production has advantages of reduction of soil erosion and energy conservation. Research on effects of NT for sweet corn or super sweet corn is very limited. Hybrids of sugary (su) and shrunken-2 (sh2) were tested under NT and conventional tillage (CT) practices to investigate plant characters, ear characters, fresh yield, and grain yield. Sugary hybrids were Golden Cross Bantam 70 (GCB70), Sprint, Geumdanok, and Danok3. Shrunken-2 hybrids were BSS9472, Cambella90, GSS9299, Jubilee, KS-Y-65, and Chodangok1. Emergence rates under NT were lower than those under CT for su, while there was no difference between tillage systems for sh2. There were no differences between CT and NT for days to tasseling and silking, plant height, and ear height for both su and sh2. Ear characters such as ear length, number of kernel rows, number of kernels per row, and t100-kernel weight under NT were not significantly different from those under CT. There were no differences between two tillage practice for fresh and grain yield, rather they showed trend of increases under NT practices. Results from this trial indicate that NT practice for both su and sh2 cultivation may be possible to recommend to farmers.

Effect of the Sintering Temperature on Electrical Properties of Porous Barium-strontium Titanate Ceramics

  • Kim, Jun-Gyu;Sim, Jae-Hwang;Cho, Won-Seung
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.1
    • /
    • pp.5-10
    • /
    • 2003
  • Porous barium-strontium titanate ceramics were fabricated by adding corn- or potato-starch (are referred to as starch). The effect of sintering temperature on the microstructure and electrical properties of the porous ceramics was investigated. The room-temperature electrical resistivity of the barium-strontium titanate ceramics decreased with sintering temperature. The porosity and pore size were decreased and the grain size was increased with increasing the sintering temperature. The porosity and grain size of the barium-strontium titanate ceramics with corn-starch sintered at 1300 and 1450$^{\circ}C$ were 28.5, 22.6% and 3.2, 6.2 $\mu\textrm{m}$, respectively. The average pore sizes of the barium-strontium titanate ceramics with corn-starch sintered at 1300, 1400 and 1450$^{\circ}C$ were 0.5, 0.3 and 0.2 $\mu\textrm{m}$, respectively. The decrease in the room-temperature resistivity with increasing sintering temperature is attributed mainly due to the increase of grain size and the decrease of the electrical barrier height of grain boundaries as well as the partial decrease of porosity.

Yield and Nitrogen Uptake of Corn in Corn after Soybean Cropping

  • Seo, Jong-Ho;Lee, Ho-Jin;Lee, Jin-Wook
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.46 no.4
    • /
    • pp.266-271
    • /
    • 2001
  • Soybean can produce high-N residue due to N-fixation, so soybean rotation may increase yield of subsequent corn and reduce N fertilizer on the corn fairly. To find out the contribution of nitrogen to subsequent corn following soybean cultivation, soil nitrate, corn yield, and nitrogen uptake were measured for three continuous corn cropping years after soybean rotation. Three N rates of 0, 80, and 160 kg/ha were applied to three continuous corn following soybean cropping. At 6-leaf stage, soil nitrate amount at the soil depth of 0-30cm ranged from 60 to 80 kgN/ha higher in the first corn cropping year than that in the second and third corn cropping years. Judging from corn N status such as SPAD value, N concentration of ear-leaf and stover at silking stage, N contribution of previous soybean to corn in the first corn year was N fertilizer of approximately 80 kg N/ha. Stover N uptake at silking stage increased from 47 to 52 kg N/ha at the 0, and 80 kg N/ha of N rates in the first corn cropping year compared with those in the second and third corn cropping years. Corn grain yield at the 0 kg N/ha of N rate was 6-7 ton/ha higher in the first corn cropping year than that in the second and third corn cropping years, respectively. When compared the first corn year following soybean cropping with the second and third corn cropping years, N uptake of grain and stover at harvest with low N rates such as 0 and 80 kg N/ha increased from 45 to 67kg N/ha, from 35 to 60 kg N/ha, respectively. N uptake of whole plant by soybean rotation increased from 93 to 118 kg N/ha in the first year compared with that in the second and third corn cropping years. However, the N contribution by soybean cropping was small in the second and third continuous corn cropping years. Therefore, it was concluded that the nitrogen fertilizer of 80-100 kg N/ha in the first corn cropping year could be saved by soybean rotation and annual alternative corn-soybean rotation could be the best rotation system.

  • PDF

Potential of four corn varieties at different harvest stages for silage production in Malaysia

  • Nazli, Muhamad Hazim;Halim, Ridzwan Abdul;Abdullah, Amin Mahir;Hussin, Ghazali;Samsudin, Anjas Asmara
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.2
    • /
    • pp.224-232
    • /
    • 2019
  • Objective: Apart from various climatic differences, corn harvest stage and varieties are two major factors that can influence the yield and quality of corn silage in the tropics. A study was conducted to determine the optimum harvest stage of four corn varieties for silage production in Malaysia. Methods: Corn was harvested at four growth stages; silking, milk, dough, and dent stages from four varieties; Sweet Corn hybrid 926, Suwan, breeding test line (BTL) 1 and BTL 2. Using a split plot design, the treatments were then analysed based on the plant growth performance, yield, nutritive and feeding values followed by a financial feasibility study for potential commercialization. Results: Significant differences and interactions were detected across the parameters suggesting varying responses among the varieties towards the harvest stages. Sweet Corn was best harvested early in the dough stage due to high dry matter (DM) yield, digestible nutrient, and energy content with low fibre portion. Suwan was recommended to be harvested at the dent stage when it gave the highest DM yield with optimum digestible nutrient and energy content with low acid detergent fibre. BTL 1 and BTL 2 varieties can either be harvested at dough or dent stages as the crude protein, crude fibre, DM yield, DM content, digestible nutrient and energy were not significantly different at either stage. Further financial analysis showed that only Sweet Corn production was not financially feasible while Suwan had the best financial appraisal values among the grain varieties. Conclusion: In conclusion, only the grain varieties tested had the potential for silage making according to their optimum harvest stage but Suwan is highly recommended for commercialization as it was the most profitable.

Effects of Expander Conditioning of Corn- and Sorghum-Based Diets on Pellet Quality and Performance in Finishing Pigs and Lactating Sows

  • Johnston, S.L.;Hancock, J.D.;Hines, R.H.;Kennedy, G.A.;Traylor, S.L.;Chae, B.J.;Han, In K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.12 no.4
    • /
    • pp.565-572
    • /
    • 1999
  • Two experiments were conducted to determine the effects of conditioning (conventional vs expander) corn- and sorghum-based diets on production traits for lactating sows and finishing pigs. In Exp. 1, one hundred sixty-eight sows (parity 1-4, PIC line C15) were fed the corn or sorghum grain diets as a meal, standard (steam) conditioned pellets, or expanded pellets to give a $2{\times}3$ factorial arrangement of treatments. Pellet durability index (PDD was similar for the sorghum- vs corn-based diets, but increased when diets were expanded pellets for both corn- and sorghum-based diets. The corn-based meal diet supported 3.3% greater litter weight gain than the sorghum-based meal diet (44.0 kg vs 42.8 kg). However, the advantage for the corn-based diet disappeared with expander processing (ie., sows fed the sorghum-based diet responded more to diets processed with the alternative processing technology). Sow weight change during lactation was similar (p>0.15) among treatments, although average daily feed intake tended to be greater (p<0.09) for the sows fed sorghum. For Exp. 2, a total of 71 barrows (average initial weight of 58.0 kg) were used in a growth assay to determine the effects of feeding com- and sorghum-based diets, as meal or pellets, after processing with a conventional steam conditioner or an expander (high-shear) conditioner. PDI was not different for the sorghum- vs corn-based diets, but increased from 84 to 95% with expander conditioning compared to conventional steam conditioning. Rate and efficiency of gain, and carcass leanness were similar for pigs fed sorghum and corn (p>0.15). Efficiency of gain was greater (p<0.04) for pigs fed the pelleted (356 g/kg) diets compared to those given the meal (348 g/kg) diets. However, efficiencies of gain were similar (p>0.11) for pigs fed the conventional- and expander-conditioned diets. Pelleting increased (p<0.01) the incidence and severity of stomach lesions regardless of grain type. In conclusion, corn-based meal diet resulted in a greater litter weight gain than the sorghum-based meal diet. However, that advantage disappeared when the diets were expanded and pelleted. Finishing pigs fed pelleted diets were more efficient than those fed meal diets.

AN ENERGY ANALYSIS ON GRAIN DRYING SYSTEMS IN CHINA

  • Shao, Y.J.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1993.10a
    • /
    • pp.906-911
    • /
    • 1993
  • There will be about 0.25 to 0.3billion tons of grain product including rice, wheat and corn etc. each year in China. An energy analysis on grain drying system on which electricity , oil , coal or sun power and batch, tower with thick or thin layer of grain, infra red radiation. fluidized flowing types grain drying systems were made and compared for the sake of energy saving is shown in this paper.

  • PDF

Toxigenic Mycobiota of Small Grain Cereals in Korea

  • Lee, Theresa
    • 한국균학회소식:학술대회논문집
    • /
    • 2016.05a
    • /
    • pp.33-33
    • /
    • 2016
  • Mycotoxins are toxic secondary metabolites produced by fungi. They can be present in where agricultural-based commodities are contaminated with toxigenic fungi. These mycotoxins cause various toxicoses in human and livestock when consumed. Small grains including corn, barley, rice or wheat are frequently contaminated with mycotoxins due to infection mainly by toxigenic Fusarium species and/or under environment favorable to fungal growth. One of the most well-known Fusarium toxin groups in cereals is trichothecenes consisting of many toxic compounds. Deoxynivalenol (DON), nivalenol (NIV), T-2 toxin, and various derivatives belong to this group. Zearalenone and fumonisin (FB) are also frequently produced by many species of the same genus. In order to monitor Korean cereals for contamination with Fusarium and other mycotoxigenic fungal species as well, barley, corn, maize, rice grains, and soybean were collected from fields at harvest or during storage for several years. The fungal colonies outgrown from the grain samples were identified based on morphological and molecular characteristics. Trichothecene chemotypes of Fusarium species or presence of FB biosynthetic gene were determined using respective diagnostic PCR to predict possible toxin production. Heavy grain contamination with fungi was detected in barley, rice and wheat. Predominant fungal genus of barley and wheat was Alternaria (up to 90%) while that of rice was Fusarium (~40%). Epicoccum also appeared frequently in barley, rice and wheat. While frequency of Fusarium species in barley and wheat was less than 20%, the genus mainly consisted of Fusarium graminearum species complex (FGSC) which known to be head blight pathogen and mycotoxin producer. Fusarium composition of rice was more diverse as FGSC, Fusarium incarnatum-equiseti species complex (FIESC), and Fusarium fujikuroi species complex (FFSC) appeared all at considerable frequencies. Prevalent fungal species of corn was FFSC (~50%), followed by FGSC (<30%). Most of FFSC isolates of corn tested appeared to be FB producer. In corn, Fusarium graminearum and DON chemotype dominate within FGSC, which was different from other cereals. Soybeans were contaminated with fungi less than other crops and Cercospora, Cladosporium, Alternaria, Fusarium etc. were detected at low frequencies (up to 14%). Other toxigenic species such as Aspergillus and Penicillium were irregularly detected at very low frequencies. Multi-year survey of small grains revealed dominant fungal species of Korea (barley, rice and wheat) is Fusarium asiaticum having NIV chemotype.

  • PDF