• Title/Summary/Keyword: Corn Energy

Search Result 395, Processing Time 0.022 seconds

Effect of Dietary α-1,6-Galactosidase and β-1,4-Mannanase on Growth Performance and Nutrient Digestibility in Nursery and Growing Pigs (자돈 및 육성돈에 있어 α-1,6-galactosidase와 β-1,4-mannanase의 사료내 첨가가 성장 및 영양소 소화율에 미치는 영향)

  • Kwon, O. S.;Kim, I. H.;Lee, S. H.;Hong, J. W.;Kim, J. H.;Moon, T. H.;Lee, J. H.
    • Journal of Animal Science and Technology
    • /
    • v.45 no.2
    • /
    • pp.211-218
    • /
    • 2003
  • For the Exp. 1, a total of sixty pigs (10.57$\pm$0.30kg average initial body weight) were used in a 15-d growth assay to determine the effect of dietary $\alpha$-1,6-galactosidase and $\beta$-1,4-mannanase on growth performance and nutrient digestibility. Dietary treatments included 1) CON (corn-dried whey-SBM based diet), 2) EC0.1 (CON diet+0.1% enzyme complex of $\alpha$-1,6-galactosidase and $\beta$-1,4-mannanase). Through the entire experimental period, gain/feed of pigs fed EC0.1 diet was higher (0.43 vs 0.52) than that of pigs fed CON diet (P<0.05). Pigs fed EC0.1 diet showed significant (P<0.05) improvement in dry matter (74.82% vs 82.41%) and nitrogen (70.59% vs 77.88%) digestibilities compared to pigs fed CON diet. For the Exp. 2, a total of thirty six pigs (22.30$\pm$0.45kg average initial body weight) were used in a 30-d growth assay to determine the effects of dietary $\alpha$-1,6-galactosidase and $\beta$-1,4-mannanase in low energy diet on growth performance and nutrient digestibility. Dietary treatments included 1) AME (adequate ME diet), 2) AME+EC0.1 (AME diet+0.1% enzyme complex) and LME+EC0.1 (low ME diet + 0.1% enzyme complex). Through the entire experimental period, average daily feed intake of pigs fed enzyme complex supplemented diets was higher than that of pigs fed CON diet (P<0.05). Also, pigs fed AME+EC0.1 diet showed significant (P<0.05) increase in ADFI (1,401g vs 1,733g) compared to pigs fed CON diet. Pigs fed enzyme complex supplemented diet showed significant (P<0.05) improvement in dry matter and nitrogen digestibilities compared to pigs fed CON diet. In conclusion, the results obtained from these feeding trials suggest that the supplementation of $\alpha$-1,6-galactosidase and $\beta$-1,4-mannanase was an effective means for improving growth performance and dry matter and nitrogen digestibilities in nursery and growing pigs.

Effect of Feeding Extruded Food Waste and Animal Manure Mixture Diets on Laying Performance and Egg Quality in Laying Hen (남은 음식물과 가축분 혼합 Extrusion 사료의 대체급여가 산란계의 산란성적 및 난질에 미치는 영향)

  • Kim C. H.;Pak J. I.;Lee K. H.
    • Korean Journal of Poultry Science
    • /
    • v.32 no.2
    • /
    • pp.89-96
    • /
    • 2005
  • This studies were conducted to investigated the feeding effects of extruded broiler manure(BMERF) mixture and swine manure(SFERF) mixture on laying performance and egg qualify of laying hens. As a experimental feed, broiler manure, corn and tapioca were mixed in 50, 30 and $20\%$ to use for treated extrusion feed(BMERF, Exp. 1) and food waste(FW), swine manure and com were also mixed in 40, 40 and $20\%$ to use it(SFERF, Exp. 2) and implemented during 12 weeks, four replication and 30 chick of each treatment. The nutritional ingredients(protein, energy and calcium contents) of food waste, broiler manure and swine manure had been significantly improved(p<0.05) when handling extrusion. In the Exp. 1, the feed intake was much higher BMERF $40\%$ and BMERF $20\%$ than control and BMERF $10\%(p<0.05)$, the egg production of control, BMERF $10\%$ and BMERF $20\%$ were not significantly difference(p>0.05), but BMERF $40\%$ was significantly lower(p<0.05). The feed efficiency of control and BMERF $10\%$ were not significantly difference(p>0.05), but BMERF $20\%$ and BMERF $40\%$ were significantly lower(p<0.05). York color, White height and Haugh unit did not affected by BMERF additive. In the Exp. 2, the feed intake of control, FW $20\%$, SFERF $10\%$ and SFERF $20\%$ were not significantly difference(p<0.05), but FW $40\%$ and SFERF $40\%$ were significantly higher(p<0.05). The egg production of SFERF $10\%$ and SFERF $20\%$ were not significantly difference(p>0.05) with control, but FW $20\%$, FW $40\%$ and SFERF $40\%$ were significantly lower(p<0.05). The feed efficiency was similar tendency to the egg production, however, the egg weight, york color, white height and haugh unit were not significantly difference among each treatments(p>0.05).

Effect of Microbial Phytase on Performance, Nutrient Absorption and Excretion in Weaned Pigs and Apparent Ileal Nutrient Digestibility in Growing Pigs

  • Zeng, Z.K.;Piao, X.S.;Wang, D.;Li, P.F.;Xue, L.F.;Salmon, Lorraine;Zhang, H.Y.;Han, X.;Liu, L.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.24 no.8
    • /
    • pp.1164-1172
    • /
    • 2011
  • Two experiments were conducted to evaluate the efficacy of Trichoderma reesei derived phytase for pigs fed diets with fixed calcium to total phosphorus ratios (1.5:1). In Exp. 1, 280 weaned pigs (initial BW of $10.32{\pm}1.94$ kg) were allocated to one of five dietary treatments on the basis of weight and gender in a randomized complete block design. Treatments were the low phosphorus (0.6% Ca, 0.4% total P and 0.23% available P) diets supplemented with 0, 250, 1,000, or 2,000 FTU phytase/kg of diet and a positive control diet (PC; 0.85% Ca, 0.58% total P and 0.37% available P). The treatments were applied to seven pens with eight pigs per pen, half male and half female. In Exp. 2, six barrows fitted with ileal T-cannula (initial BW = $35.1{\pm}1.6$ kg) were assigned to three dietary treatments with a double $3{\times}3$ Latin square design. The dietary treatments were the low-phosphorus diet (0.53% Ca, 0.34% total P and 0.14% available P), the low phosphorus diet plus 1,000 FTU phytase/kg and a positive control diet (0.77% Ca, 0.50% total P and 0.30% available P). In Exp. 1, there were linear increases (p<0.01) in weight gain, phosphorus absorption, bone strength, calcium and phosphorus content of fat-free dried bone and plasma phosphorus concentrations with increasing dose rate of phytase. The performance of pigs fed the diets with 250, 1,000, or 2,000 FTU of phytase/kg did not differ from pigs fed the PC diet. Pigs fed diets with 1,000 or 2,000 FTU of phytase/kg did not differ from pigs fed the PC diet in bone characteristics. The apparent digestibility of dry matter, crude protein, ash and energy was not affected by dietary treatment. However, pigs fed the PC diet excreted more fecal phosphorus (g/d, p<0.01) and fecal phosphorus per BW gain (g/kg) than pigs fed the diets with phytase. Phytase linearly decreased (p<0.01) fecal phosphorus excreted per BW gain (g/kg), plasma calcium concentration as well as plasma and bone alkaline phosphatase activity. In Exp. 2, phytase supplementation in the low-P diet increased (p<0.05) the apparent ileal digestibility (AID) of Ca, P, leucine, lysine, phenylalanine, alanine and cysteine, tended to AID of crude protein, isoleucine, threonine, asparagine and serine. In conclusion, the novel phytase originated from Trichoderma reesei is effective in releasing Ca, P, and amino acids from corn soy based diet for pigs.

Physiological and Proteome Responses of Korean F1 maize (Zea mays L.) Hybrids to Water-deficit Stress during Tassel Initiation (옥수수 영양생장기 한발 스트레스에 의한 광합성의 생리적 반응 및 프로테옴 변화 분석)

  • Bae, Hwan Hee;Kwon, Young-Sang;Son, Beom-Young;Kim, Jung-Tae;Go, Young Sam;Kim, Sun-Lim;Baek, Seong-Bum;Shin, Seonghyu;Kim, Sang Gon
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.64 no.4
    • /
    • pp.422-431
    • /
    • 2019
  • Severe droughts in spring have occurred frequently in Korea in recent years, exerting a critical impact on corn yield. Therefore, it is necessary to find physiological and/or molecular indicators of the response to drought stress in maize plants. In this study, we investigated the effects of water-deficit stress on two Korean elite F1 maize hybrids, Ilmichal and Gwangpyeongok, by withholding water for 10 days at tassel initiation. The water deficit drastically reduced the relative leaf water content, leaf number, leaf area, and stem length, leading to dry matter reduction. Moreover, it reduced the SPAD values and stomatal conductance of leaves in drought-stressed plants of both hybrids. Importantly, the number of leaves and SPAD value were non-destructive and easy to investigate in response to water-deficit stress, suggesting that they may be useful indicators for screening drought-tolerant genetic resources. We detected more than 100 spots that were differentially accumulated under drought stress. Of these spots, a total of 21 protein spots (≥1.5-fold) from drought-exposed maize leaves were successfully analyzed by MALDI-TOF-TOF mass spectrometry. Functional annotation using Gene Ontology analysis revealed that most of the identified proteins were involved in carbohydrate metabolism, stress response fatty acid catabolism, photosynthesis, energy metabolism, and transport. The protein expression levels were increased in both Ilmichal and Gwangpyeongok, except for triosephosphate isomerase, fructose-bisphosphate aldolase, and an uncharacterized protein. The lactoylglutathione lyase delta (3,5)-delta (2,4)-dienoyl-CoA isomerase was overexpressed in Gwangpyeongok only. The results obtained from this study suggest that the drought-specific genes may be useful as molecular markers for screening drought-tolerant maize genotypes.

Potassium Physiology of Upland Crops (밭 작물(作物)의 가리(加里) 생리(生理))

  • Park, Hoon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.10 no.3
    • /
    • pp.103-134
    • /
    • 1977
  • The physiological and biochemical role of potassium for upland crops according to recent research reports and the nutritional status of potassium in Korea were reviewed. Since physical and chemical characteristics of potassium ion are different from those of sodium, potassium can not completely be replaced by sodium and replacement must be limited to minimum possible functional area. Specific roles of potassium seem to keep fine structure of biological membranes such as thylacoid membrane of chloroplast in the most efficient form and to be allosteric effector and conformation controller of various enzymes principally in carbohydrate and protein metabolism. Potassium is essential to improve the efficiency of phoro- and oxidative- phosphorylation and involve deeply in all energy required metabolisms especially synthesis of organic matter and their translocation. Potassium has many important, physiological functions such as maintenance of osmotic pressure and optimum hydration of cell colloids, consequently uptake and translocation of water resulting in higher water use efficiency and of better subcellular environment for various physiological and biochemical activities. Potassium affects uptake and translocation of mineral nutrients and quality of products. potassium itself in products may become a quality criteria due to potassium essentiality for human beings. Potassium uptake is greatly decreased by low temperature and controlled by unknown feed back mechanism of potassium in plants. Thus the luxury absorption should be reconsidered. Total potassium content of upland soil in Korea is about 3% but the exchangeable one is about 0.3 me/100g soil. All upland crops require much potassium probably due to freezing and cold weather and also due to wet damage and drought caused by uneven rainfall pattern. In barley, potassium should be high at just before freezing and just after thawing and move into grain from heading for higher yield. Use efficiency of potassium was 27% for barley and 58% in old uplands, 46% in newly opened hilly lands for soybean. Soybean plant showed potassium deficiency symptom in various fields especially in newly opened hilly lands. Potassium criteria for normal growth appear 2% $K_2O$ and 1.0 K/(Ca+Mg) (content ratio) at flower bud initiation stage for soybean. Potassium requirement in plant was high in carrot, egg plant, chinese cabbage, red pepper, raddish and tomato. Potassium content in leaves was significantly correlated with yield in chinese cabbage. Sweet potato. greatly absorbed potassium subsequently affected potassium nutrition of the following crop. In the case of potassium deficiency, root showed the greatest difference in potassium content from that of normal indicating that deficiency damages root first. Potatoes and corn showed much higher potassium content in comparison with calcium and magnesium. Forage crops from ranges showed relatively high potassium content which was significantly and positively correlated with nitrogen, phosphorus and calcium content. Percentage of orchards (apple, pear, peach, grape, and orange) insufficient in potassium ranged from 16 to 25. The leaves and soils from the good apple and pear orchards showed higher potassium content than those from the poor ones. Critical ratio of $K_2O/(CaO+MgO)$ in mulberry leaves to escape from winter death of branch tip was 0.95. In the multiple croping system, exchangeable potassium in soils after one crop was affected by the previous crops and potassium uptake seemed to be related with soil organic matter providing soil moisture and aeration. Thus, the long term and quantitative investigation of various forms of potassium including total one are needed in relation to soil, weather and croping system. Potassium uptake and efficiency may be increased by topdressing, deep placement, slow-releasing or granular fertilizer application with the consideration of rainfall pattern. In all researches for nutritional explanation including potassium of crop yield reasonable and practicable nutritional indices will most easily be obtained through multifactor analysis.

  • PDF