• Title/Summary/Keyword: Core-shell 구조

Search Result 150, Processing Time 0.025 seconds

Synthesis of Organic-inorganic Core-shell Nanoparticle Powder using Immersion Annealing Process (담금 어닐링을 이용한 유·무기 코어-쉘 나노입자 파우더 합성법)

  • Choi, Young Joong;Jung, Hyunsung;Bang, Jiwon;Park, Woon Ik
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.25 no.4
    • /
    • pp.35-40
    • /
    • 2018
  • Simple and useful synthetic process to control the morphology of block copolymers (BCPs) is required for implementation in various device applications. However, the conventional method to use colloidal templates is not enough to realize the production of pure and massive core-shell nanoparticles due to the cost-intensive complex process. Here, we introduce a novel and facile synthesis method to realize the formation of core-shell $SiO_x$ nanoparticle power by employing an immersion annealing of a sphere-forming poly(styrene-b-dimethylsiloxane) (PS-b-PDMS) BCP. We successfully obtained a PS-encapsulated $SiO_x$ nanoparticle with a diameter of ~20 nm. In addition, we analyzed how the mixing ratio of heptane/ethanol affects the BCP morphology of self-assembled PS-b-PDMS nanoparticles, showing a worm-like structure under the optimum immersion conditions. This useful approach is expected to be extendable to other solvent-based BCP synthesis, providing a new guideline for unique BCP production.

Thermal Conductivity Measurement of Ge-SixGe1-x Core-Shell Nanowires Using Suspended Microdevices (뜬 마이크로 디바이스를 이용한 Ge-SixGe1-x Core-Shell Nanowires 의 열전도율 측정)

  • Park, Hyun Joon;Nah, Jung hyo;Tutuc, Emanuel;Seol, Jae Hun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.10
    • /
    • pp.825-829
    • /
    • 2015
  • Theoretical calculations suggest that the thermoelectric figure of merit (ZT) can be improved by introducing a core-shell heterostructure to a semiconductor nanowire because of the reduced thermal conductivity of the nanowire. To experimentally verify the decrease in thermal conductivity in core-shell nanowires, the thermal conductivity of Ge-SixGe1-x core-shell nanowires grown by chemical vapor deposition (CVD) was measured using suspended microdevices. The silicon composition (Xsi) in the shells was measured to be about 0.65, and the remainder of the germanium in the shells was shown to play a role in decreasing defects originating from the lattice mismatch between the cores and shells. In addition to the standard four-point current- voltage (I-V) measurement, the measurement configuration based on the Wheatstone bridge was attempted to enhance the measurement sensitivity. The measured thermal conductivity values are in the range of 9-13 W/mK at room temperature and are lower by approximately 30 than that of a germanium nanowire with a comparable diameter.

Stabilization of High Nickel Cathode Materials with Core-Shell Structure via Co-precipitation Method (공침법을 통하여 합성된 코어-쉘 구조를 가지는 하이 니켈 양극 소재 안정화)

  • Kim, Minjeong;Hong, Soonhyun;Jeon, Heongkwon;Koo, Jahun;Lee, Heesang;Choi, Gyuseok;Kim, Chunjoong
    • Korean Journal of Materials Research
    • /
    • v.32 no.4
    • /
    • pp.216-222
    • /
    • 2022
  • The capacity of high nickel Li(NixCoyMn1-x-y)O2 (NCM, x ≥ 0.8) cathodes is known to rapidly decline, a serious problem that needs to be solved in a timely manner. It was reported that cathode materials with the {010} plane exposed toward the outside, i.e., a radial structure, can provide facile Li+ diffusion paths and stress buffer during repeated cycles. In addition, cathodes with a core-shell composition gradient are of great interest. For example, a stable surface structure can be achieved using relatively low nickel content on the surface. In this study, precursors of the high-nickel NCM were synthesized by coprecipitation in ambient atmosphere. Then, a transition metal solution for coprecipitation was replaced with a low nickel content and the coprecipitation reaction proceeded for the desired time. The electrochemical analysis of the core-shell cathode showed a capacity retention of 94 % after 100 cycles, compared to the initial discharge capacity of 184.74 mA h/g. The rate capability test also confirmed that the core-shell cathode had enhanced kinetics during charging and discharging at 1 A/g.

Glycerol Steam Reforming for Hydrogen Production on Metal-ceramic Core-shell CoAl2O4@Al Composite Structures (금속-세라믹 Core-Shell CoAl2O4@Al 구조체를 적용한 불균일계 촉매의 글리세롤 수소전환 반응특성)

  • Kim, Jieun;Lee, Doohwan
    • Clean Technology
    • /
    • v.21 no.1
    • /
    • pp.68-75
    • /
    • 2015
  • In this study, we investigated the structure and properties of a highly heat conductive metal-ceramic core-shell CoAl2O4@Al micro-composite for heterogeneous catalysts support. The CoAl2O4@Al was prepared by hydrothermal surface oxidation of Al metal powder, which resulted in the structure with a high heat conductive Al metal core encapsulated by a high surface area CoAl2O4 shell. For comparison, CoAl2O4 was also prepared by co-precipitation method and also utilized for a catalyst support. Rh catalysts supported on CoAl2O4@Al and CoAl2O4 were prepared by incipient wetness impregnation and characterized by N2 adsorption, X-ray diffraction (XRD), scanning electron microscopy (SEM), CO chemisorption, and temperature-programmed reduction (TPR). The properties of catalysts were investigated for glycerol steam reforming reaction for hydrogen production at 550 ℃. Rh/CoAl2O4@Al exhibited about 2.8 times higher glycerol conversion turnover frequency (TOF) than Rh/CoAl2O4 due to facilitated heat transport through the core-shell structure. The CoAl2O4@Al and CoAl2O4 also showed some catalytic activities due to a partial reduction of Co on the support, and a higher catalytic activity was also found on the CoAl2O4@Al core-shell than CoAl2O4. These catalysts, however, displayed deactivation on the reaction stream due to carbon deposition on the catalysts surface.

Synthesis of free-standing ZnO/Zn core-shell micro-polyhedrons using thermal chemical vapor deposition (열화학기상증착법을 이용한 프리스탠딩 ZnO/Zn 코어셀 마이크로 다면체 구조물의 합성)

  • Choi, Min-Yeol;Park, Hyun-Kyu;Jeong, Soon-Wook;Kim, Sang-Woo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.18 no.4
    • /
    • pp.155-159
    • /
    • 2008
  • In this work, we report synthesis of free-standing ZnO/Zn core-shell micro-polyhedrons using metal Zn pellets as a source material by the thermal chemical vapor deposition process. Scanning and transmission electron microscopy measurements were introduced to investigate morphologies and structural properties of as-grown ZnO/Zn core-shell micro-polyhedrons. It was found that micro-polyhedrons were composed of inner single-crystalline metal Zn surrounded by single-crystalline ZnO nanorod arrays. The inner single crystalline metal Zn with micro-scale diameter has a hexagonal crystal structure. Diameter and height of ZnO nanorods covering the metal Zn surface are below 10 nm and 100 nm, respectively. It was also confirmed that c-axis oriented ZnO nanorods are single crystalline with a hexagonal crystal structure.

Nanostructure Control of PtNiN/C Catalysts for Oxygen Reduction Reaction by Regulating Displacement Rate of Precursor (전구체 치환 속도 조절을 통한 산소환원반응용 PtNiN/C 촉매의 나노구조 제어)

  • Dong-gun Kim;Seongseop Kim;Sung Jong Yoo;Pil Kim
    • Clean Technology
    • /
    • v.30 no.1
    • /
    • pp.55-61
    • /
    • 2024
  • Efforts are actively underway to address the issues related to the high cost of Pt-based catalysts for oxygen reduction reactions by designing high-performance Pt-based alloys through the control of their nanostructures. In this study, a method was proposed to control the nanostructure of Pt-based alloys, either hollow or core-shell, by adjusting the pH of the solution during the galvanic replacement reaction between the carbon-supported nickel-nickel nitride composite and the Pt ions. The physical characteristics, including the state, quantity, and morphology of the metal particles under different preparation conditions, were evaluated through X-ray diffraction, transmission electron microscopy, and inductively coupled plasma. When the prepared catalysts were employed for the oxygen reduction reaction, they exhibited an improvement in area specific-activity compared to a commercial Pt/C, with a 1.7 and 1.9-fold enhancement for the hollow and core-shell structured catalysts, respectively.

Characterization of artificial aggregates fabricated with direct sintering method (직화소성법으로 제조된 인공골재의 특성 분석)

  • Kim, Kang-Duk;Kang, Seun-Ggu
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.21 no.1
    • /
    • pp.34-40
    • /
    • 2011
  • The bulk density, water absorption and microstructure of the artificial aggregates were controlled as a function of sintering temperature (1100 and $1200^{\circ}C$) and time (10~60 min) in the fabrication process of the artificial aggregates by the direct sintering process using dredged soil, the inorganic wastes. Also, the physical properties of the artificial aggregates fabricated according to the different sintering methods such as the direct sintering method used in this study and the increasing temperature sintering method used in the previous report, were compared and analysed. The bulk density of aggregates sintered at $1200^{\circ}C$ by the direct sintering method showed below 1.0, and the thickness of a shell and the pore size of the black core were increased with sintering temperature. Also, in the same sintering temperature, the area of black core was decreased, the thickness of shell was increased and the water absorption was decreased with sintering time. The black core of artificial aggregates of bulk density below 1.0 had the similar microstructure, regardless of sintering methods. In contrast, the shell of aggregates fabricated by the increasing temperature sintering method showed more dense microstructure than that by direct sintering method, hence the water absorption of aggregate sintered using direct sintering was relatively high. Thus, the direct sintering method is suitable for fabrication of artificial aggregates in ceramic carriers or absorbents applications.

Preparation of Core-Shell Structured BaTiO3 Powder Via Coating of Cr2O3 and Mn2O3 (Cr2O3 및 Mn2O3의 코팅에 의한 Core-Shell 구조의 BaTiO3 분말 제조)

  • Kwon, Byung-Soo;Lee, Hye-Un;Jang, Jung-Yoon;Lee, Sang-Kil;Chung, In Jae;Cho, Young-Sang;Park, Tae-Jin;Choi, Guang-Jin
    • Korean Chemical Engineering Research
    • /
    • v.46 no.1
    • /
    • pp.99-105
    • /
    • 2008
  • Core-shell structured $BaTiO_3$ powders were produced via nano-coating of $Cr_2O_3$ and $Mn_2O_3$ to barium titanate powder system for MLCCs. From preliminary experiments, the optimal solution reaction condition employing using $KMnO_4$, $K_2Cr_2O_4$ and sulfur was established. Not only powders of $Cr_2O_3$ and $Mn_2O_3$ were synthesized but also their coating on $BaTiO_3$ powders were peformed under the same reaction condition. The coating was carried out in two ways, one-step and two-step, and its results were characterized for comparison. Conclusively speaking, two oxide additives were coated onto the $BaTiO_3$ powder surface with high quality and excellent reaction yield even under mild condition, which indicates that the contents as well as the properties of additive shell layer can be precisely controlled with rather ease.

Determination of Quantum well Thickness of ZnO-ZnMgO core-shell Cylindrical Heterostructures by Interband Optical Transitions

  • Sin, Yong-Ho;No, Seung-Jeong;Kim, Yong-Min
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.208-208
    • /
    • 2013
  • ZnO는 직접천이형 반도체로 약 3.37 eV의 넓은 에너지 band-gap과 60 meV의 비교적 큰 엑시톤 결합 에너지를 가지고 있다. 또한 단결정 성장 가능과 투명성 등 많은 장점들로 인하여 GaN와 대체할 자외선 또는 청색 발광소자나 ITO를 대체할 투명전극 같은 광범위한 광전소자로 큰 주목을 받으며 연구되어 왔다. 이러한 ZnO는 다양한 물질들의 첨가를 통해 인위적으로 특성변화가 가능한데 Mg, Be, Cd 첨가를 통한 에너지 밴드갭의 확장과 수축, Al 첨가를 통한 전기전도성의 증가 등이 그 예이다. 최근에는 밴드갭 조절을 이용한 ZnO-ZnMgO와 같은 이종접합구조가 광소자 등의 응용을 목적으로 많은 연구가 이루어지고 있다. 더불어 나노선이나 나노막대 같은 1차원 구조를 갖는 ZnO 계열 반도체의 연구는 현재 큰 이슈가 되고 있는 나노 크기의 소자 개발에 매우 큰 적용 가능성을 가지고 있다. 우리는 수열합성법을 이용하여 hexagonal ZnO 나노막대를 성장하고 그 표면에 core-shell 형태의 $ZnO-Zn_{1-x}Mg_xO$ (x=0.084) 양자우물을 원자층증착법으로 증착하였다. 본 연구에서는 만들어진 ZnO 나노막대와 ZnO-ZnMgO 나노막대, core-shell ZnO-ZnMgO 양자우물 sample들의 저온(5 K) Photoluminescence 측정을 통하여 광학적 band 구조를 분석하였다. 실험적으로 의도된 양자우물 두께와 다른 실제 형성된 양자무물의 두께를 알아내기 위하여 2차원 hexagonal 양자우물 band 구조에서 self-consistent nonlinear Poisson-Schr$\"{o}$dinger 방정식 계산과 컴퓨터 시뮬레이션을 이용하였으며, 이 방법으로 계산된 값과 실험값의 비교를 통하여 실제 형성된 양자우물의 두께를 정량적으로 유출할 수 있었다.

  • PDF

Model Analysis of Cylindrical Shell using a Scale Model of the Core Support Barrel (노심지지배럴의 축소모형을 이용한 원통형 쉘의 모드 해석)

  • 정명조;송선호;정경훈;김태형
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.12 no.1
    • /
    • pp.15-27
    • /
    • 1999
  • 본 연구에서는 노심지지배럴을 축솜형의 원통형 쉘로 이상화하여, 그의 모드 특성을 고찰하였다. 쉘의 모드 해석은 사용코드인 ANSYS를 이용하였으며, 일반적으로 사용하고 있는 요소인 SHELL61과 SHELL63을 이용하여 해석을 수행하였고 이들의 특성을 비교하였다. 또한 두께에 따른 모드 특성을 검토하여 쉘 요소의 사용 한계를 규정하였다. 한편 구멍이 있는 쉘과 없는 쉘의 모드 특성을 조사하여 구멍 및 그의 위치가 모드 특성에 미치는 영향을 파악하였다. 이들 모든 결과를 실험 및 이론에 의한 결과와 비교하였다.

  • PDF