• Title/Summary/Keyword: Core optimization

Search Result 415, Processing Time 0.023 seconds

Hybrid of the fuzzy logic controller with the harmony search algorithm to PWR in-core fuel management optimization

  • Mahmoudi, Sayyed Mostafa;Rad, Milad Mansouri;Ochbelagh, Dariush Rezaei
    • Nuclear Engineering and Technology
    • /
    • v.53 no.11
    • /
    • pp.3665-3674
    • /
    • 2021
  • One of the important parts of the in-core fuel management is loading pattern optimization (LPO). The loading pattern optimization as a reasonable design of the in-core fuel management can improve both economic and safe aspects of the nuclear reactor. This work proposes the hybrid of fuzzy logic controller with harmony search algorithm (HS) for loading pattern optimization in a pressurized water reactor. The music improvisation process to find a pleasing harmony is inspiring the harmony search algorithm. In this work, the adjustment of the harmony search algorithm parameters such as the bandwidth and the pitch adjustment rate are increasing performance of the proposed algorithm which is done through a fuzzy logic controller. Hence, membership functions and fuzzy rules are designed to improve the performance of the HS algorithm and achieve optimal results. The objective of the method is finding an optimum core arrangement according to safety and economic aspects such as reduction of power peaking factor (PPF) and increase of effective multiplication factor (Keff). The proposed approach effectiveness has been tried in two cases, Michalewicz's bivariate function problem and NEACRP LWR core. The results show that by using fuzzy harmony search algorithm the value of the fitness function is improved by 15.35%. Finally, with regard to the new solutions proposed in this research it could be used as a trustworthy method for other optimization issues of engineering field.

Probabilistic multi-objective optimization of a corrugated-core sandwich structure

  • Khalkhali, Abolfazl;Sarmadi, Morteza;Khakshournia, Sharif;Jafari, Nariman
    • Geomechanics and Engineering
    • /
    • v.10 no.6
    • /
    • pp.709-726
    • /
    • 2016
  • Corrugated-core sandwich panels are prevalent for many applications in industries. The researches performed with the aim of optimization of such structures in the literature have considered a deterministic approach. However, it is believed that deterministic optimum points may lead to high-risk designs instead of optimum ones. In this paper, an effort has been made to provide a reliable and robust design of corrugated-core sandwich structures through stochastic and probabilistic multi-objective optimization approach. The optimization is performed using a coupling between genetic algorithm (GA), Monte Carlo simulation (MCS) and finite element method (FEM). To this aim, Prob. Design module in ANSYS is employed and using a coupling between optimization codes in MATLAB and ANSYS, a connection has been made between numerical results and optimization process. Results in both cases of deterministic and probabilistic multi-objective optimizations are illustrated and compared together to gain a better understanding of the best sandwich panel design by taking into account reliability and robustness. Comparison of results with a similar deterministic optimization study demonstrated better reliability and robustness of optimum point of this study.

Optimization of HE-AAC for Korean S-DMB Using TMS320C55x DSP Core

  • Kim, Hyung-Jung;Jee, Deock-Gu
    • The Journal of the Acoustical Society of Korea
    • /
    • v.25 no.4E
    • /
    • pp.137-141
    • /
    • 2006
  • This paper presents HE-AAC decoder optimization on TMS320C55x fixed-point DSP core using a DSP-C like FFR code, which provides fast and flexible porting to a DSP core. Our optimization efforts are focused on methodologies that include general optimization methods of FFR code suitable for general DSP or RISC platform in high-level language and software optimization methods in assembly language level. The implementation result requires 48 MIPS and 135 Kbytes memory space to decode 48 Kbps stereo using real Korean S-DMB data.

Optimization of a sandwich beam design: analytical and numerical solutions

  • Awad, Ziad K.
    • Structural Engineering and Mechanics
    • /
    • v.48 no.1
    • /
    • pp.93-102
    • /
    • 2013
  • An optimization work was developed in this work to provide design information for sandwich beam in civil engineering applications. This research is motivated by the wide-range applications of sandwich structures such as; slab, beam, girder, and railway sleeper. The design of a sandwich beam was conducted by using analytical and numerical optimization. Both analytical and numerical procedures consider the optimum design with structure mass objective minimization. Allowable deflection was considered as design constraints. It was found that the optimized core to the skins mass ratio is affected by the skin to core density and elastic modulus ratios. Finally, the optimum core to skin mass ratio cannot be constant for different skin and core materials.

Optimal Design of a Transformer Core Using DEAS (DEAS를 이용한 변압기 코아의 최적설계)

  • Kim, Tae-Gyu;Kim, Jong-Wook
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.6
    • /
    • pp.1055-1063
    • /
    • 2007
  • This paper introduces an optimal design technique for a 250-watt isolation transformer using an optimization method, dynamic encoding algorithm for searches (DEAS). Although the optimal design technique for transformers dates back to 1970s and various optimization methods have been developed so far, literature concerning global optimization for transformer core design is rarely found against its importance. In this paper, core configuration of the isolation transformer whose performance is computed by complex mathematical steps is optimized with DEAS. The optimization result confirms that DEAS can be successfully employed to transformer core design for various performance specifications only by adjusting weight factors in cost function.

Thermal System Analysis for Optimization of Torch Position in The Core Making Machine. (중자조형기의 토치위치 최적화를 위한 열계해석)

  • 한근조;안성찬;심재준;한동섭
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.587-590
    • /
    • 2000
  • The new core making method economized on core sand requested. The new method is heating core box until it reaches reasonable temperature and then spraying core sand with core binder into core box. Inner temperature distribution have to uniform in order to form core of uniform thickness. Therefore, in this study we treat of inner temperature distribution of core box in priority. First, determine proper torch number. Next, optimize the torch position to minimize the average of absolute deviation(AVEDEV) of inner temperature. The results are as followed : 1. The torch number that makes inner temperature distribution about $300^\circ{C}$ uniformly is 25. 2. When $S_H$ and $S_V$ is 0.7, the torch position is optimized and AVEDEV is 5.85.

  • PDF

Analysis and Optimization of Air-Core Permanent Magnet Linear Synchronous Motors with Overlapping Concentrated Windings for Ultra-precision Applications

  • Li, Liyi;Tang, Yongbin;Ma, Mingna;Pan, Donghua
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.2 no.1
    • /
    • pp.16-22
    • /
    • 2013
  • This paper presents the analysis and optimization of air-core permanent magnet linear synchronous motor with overlapping concentrated windings to achieve high thrust density, high thrust per copper losses and low thrust ripple. For the motor design, we adopt equivalent magnetizing current (EMC) method to analyze the magnetic field and give analytical formulae for calculation of motor parameters such as no-load back EMF, dynamic force, thrust density and thrust per copper losses. Further, we proposed a multi-objective optimization by genetic algorithm to search for the optimum parameters. The design optimization is verified by 2-D Finite Element analysis (FEA).

Energy absorption characteristics of diamond core columns under axial crushing loads

  • Azad, Nader Vahdat;Ebrahimi, Saeed
    • Steel and Composite Structures
    • /
    • v.21 no.3
    • /
    • pp.605-628
    • /
    • 2016
  • The energy absorption characteristics of diamond core sandwich cylindrical columns under axial crushing process depend greatly on the amount of material which participates in the plastic deformation. Both the single-objective and multi-objective optimizations are performed for columns under axial crushing load with core thickness and helix pitch of the honeycomb core as design variables. Models are optimized by multi-objective particle swarm optimization (MOPSO) algorithm to achieve maximum specific energy absorption (SEA) capacity and minimum peak crushing force (PCF). Results show that optimization improves the energy absorption characteristics with constrained and unconstrained peak crashing load. Also, it is concluded that the aluminum tube has a better energy absorption capability rather than steel tube at a certain peak crushing force. The results justify that the interaction effects between the honeycomb and column walls greatly improve the energy absorption efficiency. A ranking technique for order preference (TOPSIS) is then used to sort the non-dominated solutions by the preference of decision makers. That is, a multi-criteria decision which consists of MOPSO and TOPSIS is presented to find out a compromise solution for decision makers. Furthermore, local and global sensitivity analyses are performed to assess the effect of design variable values on the SEA and PCF functions in design domain. Based on the sensitivity analysis results, it is concluded that for both models, the helix pitch of the honeycomb core has greater effect on the sensitivity of SEA, while, the core thickness has greater effect on the sensitivity of PCF.

Optimization of Tree-like Core Overlay in Hybrid-structured Application-layer Multicast

  • Weng, Jianguang;Zou, Xuelan;Wang, Minhong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.12
    • /
    • pp.3117-3132
    • /
    • 2012
  • The tree topology in multicast systems has high transmission efficiency, low latency, but poor resilience to node failures. In our work, some nodes are selected as backbone nodes to construct a tree-like core overlay. Backbone nodes are reliable enough and have strong upload capacity as well, which is helpful to overcome the shortcomings of tree topology. The core overlay is organized into a spanning tree while the whole overlay is of mesh-like topology. This paper focuses on improving the performance of the application-layer multicast overlay by optimizing the core overlay which is periodically adjusted with the proposed optimization algorithm. Our approach is to construct the overlay tree based on the out-degree weighted reliability where the reliability of a node is weighted by its upload bandwidth (out-degree). There is no illegal solution during the evolution which ensures the evolution efficiency. Simulation results show that the proposed approach greatly enhances the reliability of the tree-like core overlay systems and achieves shorter delay simultaneously. Its reliability performance is better than the reliability-first algorithm and its delay is very close to that of the degree-first algorithm. The complexity of the proposed algorithm is acceptable for application. Therefore the proposed approach is efficient for the topology optimization of a real multicast overlay.

Cross-Layer and End-to-End Optimization for the Integrated Wireless and Wireline Network

  • Gong, Seong-Lyong;Roh, Hee-Tae;Lee, Jang-Won
    • Journal of Communications and Networks
    • /
    • v.14 no.5
    • /
    • pp.554-565
    • /
    • 2012
  • In this paper, we study a cross-layer and end-to-end optimization problem for the integrated wireless and wireline network that consists of one wireline core network and multiple wireless access networks. We consider joint end-to-end flow control/distribution at the transport and network layers and opportunistic scheduling at the data link and physical layers. We formulate a single stochastic optimization problem and solve it by using a dual approach and a stochastic sub-gradient algorithm. The developed algorithm can be implemented in a distributed way, vertically among communication layers and horizontally among all entities in the network, clearly showing what should be done at each layer and each entity and what parameters should be exchanged between layers and between entities. Numerical results show that our cross-layer and end-to-end optimization approach provides more efficient resource allocation than the conventional layered and separated optimization approach.