• 제목/요약/키워드: Core element

검색결과 1,262건 처리시간 0.034초

PCB 기판에 내장된 마이크로 플럭스게이트 센서 (Embedded Micro Fluxgate Sensor in Printed Circuit Board (PCB))

  • 최원열;황준식;강명삼;최상언
    • 한국전기전자재료학회논문지
    • /
    • 제15권8호
    • /
    • pp.702-707
    • /
    • 2002
  • This paper presents a micro fluxgate sensor in printed circuit board (PCB). The fluxgate sensor consists of five PCB stack layers including one layer magnetic core and four layers of excitation and pick-up coils. The center layer as a magnetic core is made of a micro patterned amorphous magnetic ribbon and the core has a rectangular-ring shape. The amorphous magnetic core is easily saturated due to the low coercive field and closed magnetic path for the excitation field. Four outer layers as an excitation and pick-up coils have a planar solenoid structure. The chip size of the fabricated sensing element is 7.3$\times$5.7$\textrm{mm}^2$. Excellent linear response over the range of -100$\mu$T to +100$\mu$T is obtained with 540V/T sensitivity at excitation square wave of 3 $V_{p-p}$ and 360kHz. The very low power consumption of ~8mW was measured. This magnetic sensing element, which measures the lower fields than 50$\mu$T, is very useful for various applications such as: portable navigation systems, military research, medical research, and space research.h.

핵심개념 기반의 강건한 한국어 대화체 파싱 (A Robust Korean Spoken Language Parsing Based on Core Concept)

  • 노서영;정천영;서영훈
    • 한국정보처리학회논문지
    • /
    • 제6권8호
    • /
    • pp.2113-2123
    • /
    • 1999
  • 부분 자유어순 특성을 가지는 한국어를 CFG형태의 문법으로 기술했을 때 문법이 방대해지고 CFG형태의 문법을 파서가 이용할 때는 자연발화문의 특징인 간투어, 중복발화 등 때문에 불필요 성분을 따로 처리해야 하므로 파서의 부담이 커진다. 이러한 문제점을 해결하기 위해 본 논문에서는 발화문에서 중요한 의미를 가지는 요소를 '핵심개념'이라 정의하고 핵심개념만을 문법에 기술하여 문법이 방대해지는 것을 막고 문법에 기술된 핵심개념을 파싱요소로 선택함으로써 불필요 성분처리에 대한 파서의 부담을 줄였으며 이렇게 단순화된 문법만으로도 정확한 파싱결과를 내줄 수 있음으로 보인다. 실험결과 '여행안내'영역 자연발화문에 대해서 평균 98%이상의 올바른 파싱결과를 얻어낼 수 있었다.

  • PDF

Probabilistic multi-objective optimization of a corrugated-core sandwich structure

  • Khalkhali, Abolfazl;Sarmadi, Morteza;Khakshournia, Sharif;Jafari, Nariman
    • Geomechanics and Engineering
    • /
    • 제10권6호
    • /
    • pp.709-726
    • /
    • 2016
  • Corrugated-core sandwich panels are prevalent for many applications in industries. The researches performed with the aim of optimization of such structures in the literature have considered a deterministic approach. However, it is believed that deterministic optimum points may lead to high-risk designs instead of optimum ones. In this paper, an effort has been made to provide a reliable and robust design of corrugated-core sandwich structures through stochastic and probabilistic multi-objective optimization approach. The optimization is performed using a coupling between genetic algorithm (GA), Monte Carlo simulation (MCS) and finite element method (FEM). To this aim, Prob. Design module in ANSYS is employed and using a coupling between optimization codes in MATLAB and ANSYS, a connection has been made between numerical results and optimization process. Results in both cases of deterministic and probabilistic multi-objective optimizations are illustrated and compared together to gain a better understanding of the best sandwich panel design by taking into account reliability and robustness. Comparison of results with a similar deterministic optimization study demonstrated better reliability and robustness of optimum point of this study.

LARGE SCALE FINITE ELEMENT THERMAL ANALYSIS OF THE BOLTS OF A FRENCH PWR CORE INTERNAL BAFFLE STRUCTURE

  • Rupp, Isabelle;Peniguel, Christophe;Tommy-Martin, Michel
    • Nuclear Engineering and Technology
    • /
    • 제41권9호
    • /
    • pp.1171-1180
    • /
    • 2009
  • The internal core baffle structure of a French Pressurized Water Reactor (PWR) consists of a collection of baffles and formers that are attached to the barrel. The connections are done thanks to a large number of bolts (about 1500). After inspection, some of the bolts have been found cracked. This has been attributed to the Irradiation Assisted Stress Corrosion Cracking (IASCC). The $Electricit\acute{e}$ De France (EDF) has set up a research program to gain better knowledge of the temperature distribution, which may affect the bolts and the whole structure. The temperature distribution in the structure was calculated thanks to the thermal code SYRTHES that used a finite element approach. The heat transfer between the by-pass flow inside the cavities of the core baffle and the structure was accounted for thanks to a strong thermal coupling between the thermal code SYRTHES and the CFD code named Code_Saturne. The results for the CP0 plant design show that both the high temperature and strong temperature gradients could potentially induce mechanical stresses. The CPY design, where each bolt is individually cooled, had led to a reduction of temperatures inside the structures. A new parallel version of SYRTHES, for calculations on very large meshes and based on MPI, has been developed. A demonstration test on the complete structure that has led to about 1.1 billion linear tetraedra has been calculated on 2048 processors of the EDF Blue Gene computer.

Probabilistic assessment on buckling behavior of sandwich panel: - A radial basis function approach

  • Kumar, R.R.;Pandey, K.M.;Dey, S.
    • Structural Engineering and Mechanics
    • /
    • 제71권2호
    • /
    • pp.197-210
    • /
    • 2019
  • Probabilistic buckling behavior of sandwich panel considering random system parameters using a radial basis function (RBF) approach is presented in this paper. The random system properties result in an uncertain response of the sandwich structure. The buckling load of laminated sandwich panel is obtained by employing higher-order-zigzag theory (HOZT) coupled with RBF and probabilistic finite element (FE) model. The in-plane displacement variation of core as well as facesheet is considered to be cubic while transverse displacement is considered to be quadratic within the core and constant in the facesheets. Individual and combined stochasticity in all elemental input parameters (like facesheets thickness, ply-orientation angle, core thickness and properties of material) are considered to know the effect of different degree of stochasticity, ply- orientation angle, boundary conditions, core thickness, number of laminates, and material properties on global response of the structure. In order to achieve the computational efficiency, RBF model is employed as a surrogate to the original finite element model. The stiffness matrix of global response is stored in a single array using skyline technique and simultaneous iteration technique is used to solve the stochastic buckling equations.

Mechanical behaviors of concrete-filled rectangular steel tubular under pure torsion

  • Ding, Fa-xing;Sheng, Shi-jing;Yu, Yu-jie;Yu, Zhi-wu
    • Steel and Composite Structures
    • /
    • 제31권3호
    • /
    • pp.291-301
    • /
    • 2019
  • Pure torsion loading conditions were not frequently occurred in practical engineering, but the torsional researches were important since it's the basis of mechanical property researches under complex loading. Then a 3D finite element model with precise material constitutive models was established, and the effectiveness was verified with test data. Parametric studies with varying factors as steel yield strength, concrete strength and sectional height-width ratio, were performed. Internal stress state and the interaction effect between encased steel tube and the core concrete were analyzed. Results indicated that due to the confinement effect between steel tube and core concrete, the torsional strength of CFT columns was greatly improved comparing to plain concrete columns. The steel ratio would greatly influence the torque share between the steel tube and the core concrete. Then the torsional strength calculation formulas for core concrete and the whole CFT column were proposed. The proposed formula could be simpler and easier to use with guaranteed accuracy. Related design codes were more conservative than the proposed formula, but the proposed formula presented more satisfactory agreement with experimental results.

Evaluation of neutronics parameters during RSG-GAS commissioning by using Monte Carlo code

  • Surian Pinem;Wahid Luthfi;Peng Hong Liem;Donny Hartanto
    • Nuclear Engineering and Technology
    • /
    • 제55권5호
    • /
    • pp.1775-1782
    • /
    • 2023
  • Several reactor physics commissioning experiments were conducted to obtain the neutronic parameters at the beginning of the G.A. Siwabessy Multi-purpose Reactor (RSG-GAS) operation. These parameters are essential for the reactor to safety operate. Leveraging the experimental data, this study evaluated the calculated core reactivity, control rod reactivity worth, integral control rod reactivity curve, and fuel reactivity. Calculations were carried out with Serpent 2 code using the latest neutron cross-section data ENDF/B-VIII.0. The criticality calculations were carried out for the RSG-GAS first core up to the third core configuration, which has been done experimentally during these commissioning periods. The excess reactivity for the second and third cores showed a difference of 510.97 pcm and 253.23 pcm to the experiment data. The calculated integral reactivity of the control rod has an error of less than 1.0% compared to the experimental data. The calculated fuel reactivity value is consistent with the measured data, with a maximum error of 2.12%. Therefore, it can be concluded that the RSG-GAS reactor core model is in good agreement to reproduce excess reactivity, control rod worth, and fuel element reactivity.

On connected dominating set games

  • Kim, Hye-Kyung
    • Journal of the Korean Data and Information Science Society
    • /
    • 제22권6호
    • /
    • pp.1275-1281
    • /
    • 2011
  • Many authors studied cooperative games that arise from variants of dominating set games on graphs. In wireless networks, the connected dominating set is used to reduce routing table size and communication cost. In this paper, we introduce a connected dominating set game to model the cost allocation problem arising from a connected dominating set on a given graph and study its core. In addition, we give a polynomial time algorithm for determining the balancedness of the game on a tree, for finding a element of the core.

상악 중절치 근관치료후 수복 방법에 따른 응력 분포의 유한 요소 분석 (FINITE ELEMENT ANALYSIS OF STRESS DISTRIBUTION ACCORDING TO THE METHOD OF RESTORATION AFTER ROOT CANAL THERAPY)

  • 이재영;이정식
    • Restorative Dentistry and Endodontics
    • /
    • 제19권2호
    • /
    • pp.549-567
    • /
    • 1994
  • Restoration of severly damaged teeth after endodontic treatment had been an interest to many dentists, and it is a fact that there have been lots of studies about it. In these days, although we have used Para-Post, pins, threaded steel post, cast gold post and core, and so on, as a method of restoration frequently, it has been in controversy with the influence of them on the teeth and surrounding periodontal tissue. In this study, we assume that the crown of the upper incisor have severly damaged, so, after the root canal therapy, 4 types of restoration had been carried out; 1) coronal-radicular amalgam restoration, 2) after setting up the Para-Post, restore with composite resin core only, 3) after setting up the Para-Post; restore with amalgam core, then cover with the PPM crown 4) after setting up the Para-Post, restore with composite core, then cover with the PPM crown. After restoration, in order to observe the concentration of stress at internal portion of the teeth and the sourrounding periodontal tissue, developing a 2-dimensional finite element model of labiopalatal section, then loading forces from 3 direction - direction of 45 degrees from lingual side near the incisal edge, horizontal direction from labial height of contour, vertical direction at the incisal edge-were applied. The analyzed results were as follows: 1. Stress of the normal central incisor was concentrated on the dentin aroundpulp chamber, labiocervical portion of a tooth and root apex, but with the alveolar bone, in the case of load from the direction of 45 degrees from lingual side near the incisal edge showed remarkable concentration of stress: 2. Coronal-radicular amalgam technique -showed less concentration of stress on the root and surrounding periodontal tissue than the restoration with the Para-Post. 3. The von Mises equivalent stress on the Para-Post showed maximum value at root-core junction rather than both ends and model with PPM restoration with amalgam core showed the least concentration of stress. Only the force from horizontal direction showed large shear stress on internal portion of the root, root apex and alveolar bone. 4. PPM crown with composite core rarely showed the concentration of stress on root and periodontal tissue. 5. As for alveolar bone, remarkable shear stress was concentrated on labial and palatal side by horizontal load.

  • PDF

A Study on the Transformer Design considering the Inrush Current Reduction in the Arc Welding Machine

  • Kim, In-Gun;Liu, Huai-Cong;Cho, Su-Yeon;Lee, Ju
    • Journal of Magnetics
    • /
    • 제21권3호
    • /
    • pp.374-378
    • /
    • 2016
  • The transformer used in an inverter type arc welding machine is designed to use high frequency in order to reduce its size and cost. Also, selecting core materials that fit frequency is important because core loss increases in a high frequency band. An inrush current can occur in the primary coil of transformer during arc welding and this inrush current can cause IGBT, the switching element, to burn out. The transformer design was carried out in $A_P$ method and amorphous core was used to reduce the size of transformer. In addition, sheet coil was used for primary winding and secondary winding coil considering the skin effect. This paper designed the transformer core with an air gap to prevent IGBT burnout due to the inrush current during welding and proposed the optimum air gap length.