• Title/Summary/Keyword: Core detection

Search Result 447, Processing Time 0.024 seconds

Towards Real Time Detection of Rice Weed in Uncontrolled Crop Conditions (통제되지 않는 농작물 조건에서 쌀 잡초의 실시간 검출에 관한 연구)

  • Umraiz, Muhammad;Kim, Sang-cheol
    • Journal of Internet of Things and Convergence
    • /
    • v.6 no.1
    • /
    • pp.83-95
    • /
    • 2020
  • Being a dense and complex task of precisely detecting the weeds in practical crop field environment, previous approaches lack in terms of speed of processing image frames with accuracy. Although much of the attention has been given to classify the plants diseases but detecting crop weed issue remained in limelight. Previous approaches report to use fast algorithms but inference time is not even closer to real time, making them impractical solutions to be used in uncontrolled conditions. Therefore, we propose a detection model for the complex rice weed detection task. Experimental results show that inference time in our approach is reduced with a significant margin in weed detection task, making it practically deployable application in real conditions. The samples are collected at two different growth stages of rice and annotated manually

Improvement of Active Shape Model for Detecting Face Features in iOS Platform (iOS 플랫폼에서 Active Shape Model 개선을 통한 얼굴 특징 검출)

  • Lee, Yong-Hwan;Kim, Heung-Jun
    • Journal of the Semiconductor & Display Technology
    • /
    • v.15 no.2
    • /
    • pp.61-65
    • /
    • 2016
  • Facial feature detection is a fundamental function in the field of computer vision such as security, bio-metrics, 3D modeling, and face recognition. There are many algorithms for the function, active shape model is one of the most popular local texture models. This paper addresses issues related to face detection, and implements an efficient extraction algorithm for extracting the facial feature points to use on iOS platform. In this paper, we extend the original ASM algorithm to improve its performance by four modifications. First, to detect a face and to initialize the shape model, we apply a face detection API provided from iOS CoreImage framework. Second, we construct a weighted local structure model for landmarks to utilize the edge points of the face contour. Third, we build a modified model definition and fitting more landmarks than the classical ASM. And last, we extend and build two-dimensional profile model for detecting faces within input images. The proposed algorithm is evaluated on experimental test set containing over 500 face images, and found to successfully extract facial feature points, clearly outperforming the original ASM.

STUDY OF MILLI-JANSKY SEYFERT GALAXIES WITH STRONG FORBIDDEN HIGH-IONIZATION LINES USING THE VERY LARGE ARRAY SURVEY IMAGES

  • LAL, DHARAM V.
    • Journal of The Korean Astronomical Society
    • /
    • v.48 no.6
    • /
    • pp.399-412
    • /
    • 2015
  • We study the radio properties at 1.4 GHz of Seyfert galaxies with strong forbidden highionization lines (FHILs), selected from the Sloan Digital Sky Survey - a large-sized sample containing nearly equal proportion of diverse range of Seyfert galaxies showing similar redshift distributions compiled by using the Very Large Array survey images. The radio detection rate is low, 49%, which is lower than the detection rate of several other known Seyfert galaxy samples. These galaxies show low star formation rates and the radio emission is dominated by the active nucleus with ≤10% contribution from thermal emission, and possibly, none show evidence for relativistic beaming. The radio detection rate, distributions of radio power, and correlations between radio power and line luminosities or X-ray luminosity for narrow-line Seyfert 1 (NLS1), Seyfert 1 and Seyfert 2 galaxies are consistent with the predictions of the unified scheme hypothesis. Using correlation between radio and [O III] λ 5007 Å luminosities, we show that ∼8% sample sources are radio-intermediate and the remaining are radio-quiet. There is possibly an ionization stratification associated with clouds on scales of 0.1-1.0 kpc, which have large optical depths at 1.4GHz, and it seems these clouds are responsible for free-free absorption of radio emission from the core; hence, leading to low radio detection rate for these FHIL-emitting Seyfert galaxies

A Study on Arc Fault Detection Algorithm Based on Mash-up Analysis Technique (Mash-up 분석기술 기반의 아크 고장 검출 알고리즘에 관한 연구)

  • Lee, Ki-Yeon;Moon, Hyun-Wook;Kim, Dong-Woo;Lim, Young-Bea;Choi, Jong-Soo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.6
    • /
    • pp.995-1000
    • /
    • 2017
  • In this paper, we present an electrical arc detection algorithm using the mash-up analysis technique which is the core technology for the autonomous electrical safety management system(AESMS) of the multi-unit dwellings. The mash-up analysis technique analyzes the voltage, load current, zero phase current data simultaneously to judge arc faults. In order to develop the arc fault detection algorithm, the characteristics of series arc and parallel arc were analyzed. Also, we propose the mash-up analysis technique that analyzes waveforms of voltage, load current, and zero phase current at the same time. The arc fault detection algorithm was developed using the mash-up analysis technique. The developed algorithm can prevent electrical disasters in an effective way through accident prediction, and it will be used as a basic technology to introduce an autonomous electrical safety management system.

Implementation of a Single Image Detection and Tracking System in Multiple Images (다중 이미지에서 단일 이미지 검출 및 추적 시스템 구현)

  • Choi, Jaehak;Park, Inho;Kim, Seongyoon;Lee, Yonghwan;Kim, Youngseop
    • Journal of the Semiconductor & Display Technology
    • /
    • v.16 no.3
    • /
    • pp.78-81
    • /
    • 2017
  • Augmented Reality(AR) is the core technology of the future knowledge service industry. It is expected to be used in various fields such as medical, education, entertainment etc. Briefly, augmented reality technology is a technique in which a mapped virtual object is augmented when a real-world object is viewed through a device after mapping a real-world object and a virtual object. In this paper, we implemented object detection and tracking system, which is a key technology of augmented reality. To speed up the object tracking, the ORB algorithm, which is a lightweight algorithm compared to the detection algorithm, is applied. In addition, KNN classifier, which is a machine learning algorithm, was applied to detect a single object by learning multiple images.

  • PDF

Defect detection of vacuum insulation panel using image analysis based on corner feature detection (코너 특정점 기반의 영상분석을 활용한 진공단열재 결함 검출)

  • Kim, Beom-Soo;Yang, Jeonghyeon;Kim, Yeonwon
    • Journal of Surface Science and Engineering
    • /
    • v.55 no.6
    • /
    • pp.398-402
    • /
    • 2022
  • Vacuum Insulation Panel (VIP) is an high energy efficient insulation system that facilitate slim but high insulation performance, based on based on a porous core material evacuated and encapsulated in a multi-barrier envelope. Although VIP has been on the market for decades now, it wasn't until recently that efforts have been initiated to propose a standard on aging testing. One of the issues regarding VIP is its durability and aging due to pressure and moisture dependent increase of the initial low thermal conductivity with time. It is hard to visually determine at an early stage. Recently, a method of analyzing the damage on the a material surface by applying image processing technology has been widely used. These techniques provide fast and accurate data with a non-destructive way. In this study, the surface VIP images were analyzed using the Harris corner detection algorithm. As a result, 171,333 corner points in the normal packaging were detected, whereas 32,895 of the defective packaging, which were less than the normal packaging. were detected. These results are considered to provide meaningful information for the determination of VIP condition.

A Network Intrusion Security Detection Method Using BiLSTM-CNN in Big Data Environment

  • Hong Wang
    • Journal of Information Processing Systems
    • /
    • v.19 no.5
    • /
    • pp.688-701
    • /
    • 2023
  • The conventional methods of network intrusion detection system (NIDS) cannot measure the trend of intrusiondetection targets effectively, which lead to low detection accuracy. In this study, a NIDS method which based on a deep neural network in a big-data environment is proposed. Firstly, the entire framework of the NIDS model is constructed in two stages. Feature reduction and anomaly probability output are used at the core of the two stages. Subsequently, a convolutional neural network, which encompasses a down sampling layer and a characteristic extractor consist of a convolution layer, the correlation of inputs is realized by introducing bidirectional long short-term memory. Finally, after the convolution layer, a pooling layer is added to sample the required features according to different sampling rules, which promotes the overall performance of the NIDS model. The proposed NIDS method and three other methods are compared, and it is broken down under the conditions of the two databases through simulation experiments. The results demonstrate that the proposed model is superior to the other three methods of NIDS in two databases, in terms of precision, accuracy, F1- score, and recall, which are 91.64%, 93.35%, 92.25%, and 91.87%, respectively. The proposed algorithm is significant for improving the accuracy of NIDS.

Realtime National Defense Issue Detection and Grouping based on Web Media (웹 미디어 기반 실시간 국방 이슈 탐지 및 그룹핑)

  • Oh, Hyo-Jung
    • Journal of Digital Convergence
    • /
    • v.13 no.8
    • /
    • pp.253-260
    • /
    • 2015
  • Because mass of activity records of individuals and organizations are accumulated in the digital space and amount of information is also increasing exponentially, the most urgent requirements of users is the tool for 'efficient' acquisition of 'useful' information. This paper try digital convergence to combine a domain specific technology with real time issue detection and grouping based on Web media. To derive core functionalities, we collect and analyze user requirements of national defense issue detection services. By utilizing linguistic resources specialized on national defence area and discovering features for measuring issue importance, we try to seek differentiation domain specific issue detection method. Finally we compare our detection results based on the development outputs of prototype.

Development and Performance Test of Ka-Band Pulsed Doppler Radar System for Road Obstacle Warning (도로 장애물 경보를 위한 Ka-대역 펄스 도플러 레이다 시스템 개발 및 성능시험)

  • Jung, Jung-Soo;Seo, Young-Ho;Kwag, Young-Kil
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.1
    • /
    • pp.99-107
    • /
    • 2014
  • Abruptly occurred obstacles on highway threaten driving safety. Radar draws the attention to the collision avoidance system because it can be fully operational in all weather, and day and night condition. This paper presents the design, implementation and performance test results of pulsed Doppler radar system for detection and warning of road obstacles. The system is designed to consider highway environment and detection capability about various fixed and moving obstacles. The system consists of 4 subsystems, which include antenna unit, transmitter and receiver unit, radar signal & data processing unit, and controller & display unit. The core technologies include clutter map based change detection for fixed obstacles detection, Doppler estimation for velocity detection of moving targets, and azimuth angle estimation method using monopulse for lane estimation and tracking. The design performance of the developed radar system is verified through experiments using a fixed reference target and moving vehicles in test highway.

Test equipment development and test results analysis of optical fiber fence and OTDR for obstacle detection system (지장물검지장치용 광펜스 및 OTDR 시험설비 개발 및 기능시험결과 분석)

  • Jun, Kyung Han;Choi, Young Hun;Lee, Chang Min
    • Journal of The Korean Society For Urban Railway
    • /
    • v.6 no.4
    • /
    • pp.269-278
    • /
    • 2018
  • Railway obstacle detecion system has been introduced with high-speed railway in 2004 to prevent accidents by obstacles such as landslide, rockfall and things fallen from the gauntry over the railway. But existing system has some limitation for landslide or fallen obstacle over railway. Therefore, In this study, we suggest new advanced obstacle detection system introducing the OTDR, optical fiber fences and detection cameras. This system can detect depression degree by the force to the fences and video for the specific region as well as detection wire Off condition. We produce and functional tests for fiber fence and OTDR, which are the core parts of the development system, and results were obtained to demonstrate improved detection capabilities. Several functions also been tested to verify the advanced detection performance and got some satisfactory results. Further we will conduct environment tests and field test.