• 제목/요약/키워드: Core Wall System

검색결과 138건 처리시간 0.025초

주조 포오스트의 적합도에 관한 연구 (A STUDY ON THE ADAPTATION OF THE CAST POST)

  • 박동관;장익태
    • 대한치과보철학회지
    • /
    • 제24권1호
    • /
    • pp.55-65
    • /
    • 1986
  • An in vitro study was performed to evaluate adaptation of custom direct, custom indirect, and prefabricated post system on 15 extracted upper central incisors. 15 specimens were prepared and equally devided into 3 groups under random sampling. Each group of 5 cast posts was made with custom direct, custom indirect, and prefabricated post core method. Gap between inner wall of the dentin and outer wall of the cast post was measured on electron microphotographic prints at x500 magnification. The result were as follows ; 1. No significant difference of adaptation at cervical portion was found between each method. 2. Prefabricated post core method had poor adaptation compared with other methods. 3. Even distribution of adaptation was found in custom direct method between each portion. 4. Prefabricated post core method showed remarkable difference in adaptation between each portion.

  • PDF

계단실 공사를 위한 PC Double Wall 공법 개발 (Development of PC Double Wall for Staircase Construction)

  • 서정일;박홍근;황현종;임주혁;김용남
    • 한국건축시공학회지
    • /
    • 제14권6호
    • /
    • pp.571-581
    • /
    • 2014
  • 본 연구에서는 중공 PC 벽체 (PC Double Wall)를 적용한 계단실 공법을 개발하였다. 중공 PC 벽체는 내부 중공으로 인하여 양중 무게를 줄이고 외부 벽체가 거푸집 역할을 하며, 벽체 내부 중공에 현장 콘크리트를 타설하여 기존 PC 벽체와 비교하여 부재간의 일체성 확보가 우수하다. PC Double Wall 제작 및 현장 콘크리트 타설, 구조적 안전성을 고려하여 PC 벽체 단면과 철근 배근 상세를 제안하였다. 제안 상세를 바탕으로 얇은 PC벽체와 중공부를 효과적으로 형성하기 위한 세움 타설 방식의 거푸집 시스템을 개발하였다. PC Double Wall을 이용하여 계단실 Mock-up test를 통하여 부재 간 일체성과 시공성을 검증하였으며, 부재 간 접합부의 변형 및 균열이 발생하지 않고 시공성이 우수한 것으로 나타났다.

복합 프리캐스트 콘크리트 패널 수평접합부의 구조적 거동 (Structural Behavior on Horizontal Connection for Hybrid Precast Concrete Panel)

  • 이상섭;박금성
    • 대한건축학회논문집:구조계
    • /
    • 제35권10호
    • /
    • pp.155-162
    • /
    • 2019
  • Hybrid precast concrete panel is a wall element that is able to quickly construct the core wall structure for moderate-rise modular buildings. Hybrid precast concrete panel has unique characteristics which is a pair of C-shaped steel beams combined at the top and bottom of a concrete wall, In this study, an improved anchorage detail for vertical rebar is proposed to ensure the lateral force resistance performance of hybrid precast concrete panel emulating monolithic concrete wall. Also, the structural performance of horizontal connection is investigated experimentally with the bolt spacing parameter. And the behavior of hybrid precast concrete panel with the improved detail is compared with the monolithic concrete wall tested in a previous study. Finally, the required thickness of C-shaped steel beam to eliminate or minimize the deformation in horizontal connection is calculated by prying action equation.

건설 자동화 시스템의 적정 유형 및 핵심요소기술 분석 (An Analysis on Optimal Type and Core Technologies for Construction Automation System)

  • 이진웅;조규만;김태훈
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2016년도 추계 학술논문 발표대회
    • /
    • pp.140-141
    • /
    • 2016
  • Dynamic nature and diverse requirements on construction sites make the automation technology harder to be employed actively. In this study, we analyzed optimal type of automation system and importance of core technologies for developing efficient construction automation system on 11 construction operations. As a result, it showed that man-machine cooperation system may be the most suitable for most operations, while autonomous robot will be best suited in hard working environment such as maintenance of exterior wall. In elemental technology, ease and accuracy of control and operation showed higher priority than others regardless of automation system type. These findings will provide useful information for developing the construction automation system.

  • PDF

보강상세에 따른 RC 전단벽과 강재 보 전단접합부의 비탄성 거동 (Inelastic behavior of RC shear wall and steel girder shear connection on reinforcement details)

  • 송한범;이정한;양원직;강대언;이경훈;이원호
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2006년도 춘계학술발표회 논문집(I)
    • /
    • pp.138-141
    • /
    • 2006
  • Shear wall-frame system is one of the most, if not the most, popular system for resisting lateral loads. The core is the primary lateral load-resisting systems, the perimeter frame is designed for gravity loads, and the connection between perimeter frame and core is generally a shear connection. Specially, single plate shear connection have gained considerable popularity in recent years due to their ease of fabrication and erection. Single plate shear connection should be designed to satisfy the dual criteria of shear strength and rotational ductility. An experimental program was undertaken to evaluate seismic behavior of single plate shear connection. The main test variable is the reinforcing detail of connection. Through the experimental program, the cyclic behavior of typical and reinforcing single plate shear connection was established.

  • PDF

Structural Design of Nakanoshima Festival Tower West that Achieved High-Grade Seismic Performance

  • Kumano, Takehito;Yoshida, Satoshi;Saburi, Kazuhiro
    • 국제초고층학회논문집
    • /
    • 제6권3호
    • /
    • pp.217-226
    • /
    • 2017
  • This paper summarizes the structural concept and design of the "Nakanoshima Festival Tower West" in Osaka, Japan, which is 200m high and has a super-high damping system. Its superstructure is mainly composed of a central core and outer tube frames. It has a bottom truss structure at the boundary between the low-rise and mid-rise sections of the building, where the column arrangement is changed. Besides, the high-rise section of the building has a neck truss structure. These truss structures smoothly transfer the axial forces of the columns and reduce the flexural deformations induced by horizontal loads. Oil dampers with extremely high damping capacity are installed in the rigid walls named the "Big Wall Frames" of the low-rise section. Moreover, many braces and damping devices are well arranged in the center core of each story. The damping effects of these devices ensure that all structural members are remain within the elastic range and that story drifts are within 1/150 in large earthquakes. This super-high damping structure in the low-rise section is named the "Damping Layer". The whole structural system is named the "Super Damping Structure". The whole structural systems enhance the building's safety, comfort and Business Continuity Planning (BCP) under large earthquakes.

Novel optimal intensity measures for probabilistic seismic analysis of RC high-rise buildings with core

  • Pejovic, Jelena R.;Serdar, Nina N.;Pejovic, Radenko R.
    • Earthquakes and Structures
    • /
    • 제15권4호
    • /
    • pp.443-452
    • /
    • 2018
  • In this paper the new intensity measures (IMs) for probabilistic seismic analysis of RC high-rise buildings with core wall structural system are proposed. The existing IMs are analysed and the new optimal ones are presented. The newly proposed IMs are based on the existing ones which: 1) comprise a wider range of frequency velocity spectrum content and 2) are defined as the integral along the velocity spectrum. In analysis characteristics of optimal IMs such as: efficiency, practicality, proficiency and sufficiency are considered. As prototype buildings, RC high-rise buildings with core wall structural system and with characteristic heights: 20-storey, 30-storey and 40-storey, are selected. The non-linear 3D models of the prototype buildings are constructed. 720 non-linear time-history analyses are conducted for 60 ground motion records with a wide range of magnitudes, distances to source and various soil types. Statistical processing of results and detailed regression analysis are performed and appropriate demand models which relate IMs to demand measures (DMs), are obtained. The conducted analysis has shown that the newly proposed IMs can efficiently predict the DMs with minimum dispersion and satisfactory practicality as compared to the other commonly used IMs (e.g., PGA and $S_a(T_1)$). The newly proposed IMs overcome difficulties in calculating of integral along the velocity spectrum and present adequate replacement for IMs which comprise a wider range of frequency velocity spectrum content.

Static and dynamic analytical and experimental analysis of 3D reinforced concrete panels

  • Numayr, K.;Haddad, R.
    • Structural Engineering and Mechanics
    • /
    • 제32권3호
    • /
    • pp.399-406
    • /
    • 2009
  • A three-dimensional panel system, which was offered as a new method for construction in Jordan using relatively high strength modular panels for walls and ceilings, is investigated in this paper. The panel consists of two steel meshes on both sides of an expanded polystyrene core and connected together with a truss wire to provide a 3D system. The top face of the ceiling panel was pored with regular concrete mix, while the bottom face and both faces of the wall panels were cast by shotcreting (dry process). To investigate the structural performance of this system, an extensive experimental testing program for ceiling and wall panels subjected to static and dynamic loadings was conducted. The load-deflection curves were obtained for beam and shear wall elements and wall elements under transverse and axial loads, respectively. Static and dynamic analyses were conducted, and the performance of the proposed structural system was evaluated and compared with a typical three dimensional reinforced concrete frame system for buildings of the same floor areas and number of floors. Compressive strength capacity of a ceiling panel is determined for gravity loads, while flexural capacity is determined under the effect of wind and seismic loading. It was found that, the strength and serviceability requirements could be easily satisfied for buildings constructed using the three-dimensional panel system. The 3D panel system is superior to that of conventional frame system in its dynamic performance, due to its high stiffness to mass ratio.

Top-down 공법 현장에서 엘리베이터 코어월 정밀 시공을 위한 시공 BIM의 적용 사례 연구 (Case Study of the Field-BIM for Precision Construction of Elevator Core Wall in Top-down Project)

  • 심학보;석원균;박순전
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2019년도 추계 학술논문 발표대회
    • /
    • pp.108-109
    • /
    • 2019
  • Top-down construction is a useful method of utilizing the working space, economic benefits and shorten the construction period. Precision construction of the elevator core is very important for safety of the top-down structure. In this study, the layout system for the field-BIM(Building Information Modeling) was used to precisely construct the elevator core in the basement and the ground. Through the layout system, it was possible to process the construction status, review the design results and construction errors, and confirm whether there is or not within the construction error range for elevator installation.

  • PDF

원전 비상 노심냉각계통 배관 열성층화 현상 규명을 위한 실험적 연구 (Experimental Research for Identification of Thermal Stratification Phenomena in The Nuclear Powerplant Emergency Core Coolant System(ECCS).)

  • 송도인;최영돈;박민수
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 추계학술대회논문집B
    • /
    • pp.735-740
    • /
    • 2001
  • In the nuclear power plant, emergency core coolant system(ECCS) is furnished at reactor coolant system(RCS) in order to cool down high temperature water in case of emergency. However, in this coolant system, it occurs thermal stratification phenomena in case that there is the mixing of cooling water and high temperature water due to valve leakage in ECCS. This thermal stratification phenomena raises excessive thermal stresses at pipe wall. Therefore, this phenomena causes the accident that reactor coolant flows in reactor containment in the nuclear power plant due to the deformation of pipe and thermal fatigue crack(TFC) at the pipe wall around the place that it exists. Hence, in order to fundamental identification of this phenomena, it requires the experimental research of modeling test in the pipe flow that occurs thermal stratification phenomena. So, this paper models RCS and ECCS pipe arrangement and analyzes the mechanism of thermal stratification phenomena by measuring of temperature in variance with leakage flow rate in ECCS modeled pipe and Reynold number in RCS modeled pipe. Besides, results of this experiment is compared with computational analysis which is done in advance.

  • PDF