• Title/Summary/Keyword: Core Wall System

Search Result 139, Processing Time 0.022 seconds

A Study on the History of Technology in Korean Modern Architecture (한국 현대건축의 기술역사에 관한 연구)

  • Jung, In-Ha;Kim, Jin
    • Journal of architectural history
    • /
    • v.9 no.3 s.24
    • /
    • pp.51-69
    • /
    • 2000
  • This study tries to analyze the development of architectural technologies appeared in several tall buildings and large spatial structures from 1955 to 1999 in Korea. We suppose that these buildings represent the development of technology in Korean modern architecture. By the detailed analysis of these buildings, we can arrive at a conclusion as such; During the years 1955-1999, there existed a great changement in the eighties. We can find this fact very well in the domain of structural system and curtain wall system. In large spatial structures, the structural-system of shell and steel truss dome was replaced by that of space frame, space truss and cable truss with membrane. In tall building, the structural system of rigid frame and shear wall was replaced by tubular system, core and outrigger system. Korean architects introduced the aluminum curtain wall in the sixties, but its low technological level caused many problems in reality. Therefore, precast concrete curtain wall appeared from seventies as the main method for an outer wall in tall building. With the augmentation of height after 1980, PC curtain wall was replaced by the aluminum curtain wall of unit type and structural glass wall system. These systems help to stress the transparency in a tall building.

  • PDF

Lateral Resistance of CLT Wall Panels Composed of Square Timber Larch Core and Plywood Cross Bands

  • JANG, Sang Sik;LEE, Hyoung Woo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.47 no.5
    • /
    • pp.547-556
    • /
    • 2019
  • Thinned, small larch logs have small diameters and no value-added final use, except as wood chips, pallets, or fuel wood, which are products with very low economic value; however, their mechanical strength is suitable for structural applications. In this study, small larch logs were sawed, dried, and cut into square timbers (with a $90mm{\times}90mm$ cross section) that were laterally glued to form core panels used to manufacture cross-laminated timber (CLT) wall panels. The surface and back of these core panels were covered with 12-mm-thick structural plywood panels, used as cross bands to obtain three-ply CLT wall panels. This attachment procedure was conducted in two different ways: gluing and pressing (CGCLT) or gluing and nailing (NGCLT). The size of the as-manufactured CLT panels was $1,220mm{\times}2,440mm$, the same as that of the plywood panels. The final wall panels were tested under lateral shear force in accordance with KS F 2154. As the lateral load resistance test required $2,440mm{\times}2,440mm$ specimens, two CLT wall panels had to be attached in parallel. In addition, the final CLT panels had tongued and grooved edges to allow parallel joints between adjacent pieces. For comparison, conventional light-frame timber shear walls and midply wall systems were also tested under the same conditions. Shear walls with edge nail spacing of 150 mm and 100 mm, the midply wall system, and the fabricated CGCLT and NGCLT wall panels exhibited maximum lateral resistances of 6.1 kN/m (100%), 9.7 kN/m (158%), 16.9 kN/m (274%), 29.6 kN/m (482%), and 35.8 kN/m (582%), respectively.

Seismic Capacity according to Structural System of High-rise Apartment (고층 아파트 구조시스템에 따른 내진성능 분석)

  • Lee, Minhee;Cho, So-Hoon;Kim, Jong-Ho;Kim, Hyung-Do
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.32 no.3
    • /
    • pp.149-154
    • /
    • 2019
  • The structural system of domestic high-rise apartments can be divided into two parts; the core wall system, which is composed of walls concentrated in the center and the shear wall system, which comprises a great number of walls distributed in the plan. In order to analyze the lateral behavior of each system, buildings with typical domestic high-rise apartment plans were selected and nonlinear static analysis was performed to investigate the their collapse mechanism. From the force-displacement relation derived from nonlinear static analysis, response modification factor was evaluated by calculating the overstrengh and ductility factor, which are important in the seismic response. The ductility of core wall system is small, but as it is governed by wind load, its overstrength is greatly estimated, and its response modification factor is calculated by the overstrengh factor. Due to a large number of walls, shear wall system has a large ductility, making the response modification factor considerably large.

A Experimental Study on Structural Behavior of Hybrid Precast Concrete Panel (복합 프리캐스트 콘크리트 패널의 구조 거동에 대한 실험적 연구)

  • Lee, Sang-Sup;Park, Keum-Sung
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.34 no.9
    • /
    • pp.11-18
    • /
    • 2018
  • As the height of the modular buildings increases, their stability becomes more and more dependent on the core. All traditional construction methods in structural concrete and steel can be utilized for cores in modular buildings but a core system with dry connection is more desirable to complete a greater degree of factory finish and faster erection of modular buildings. In order to do that, the hybrid PC(precast concrete) panel, which has a pair of C-shaped steel beams combined at the top and bottom of a concrete wall, was developed, In this study the cyclic lateral loading test on the hybrid PC panel is carried out and the panel configurations are examined to enhance the structural performance in comparison with the RC wall. Experimental results show that the strength of hybrid PC panel is about 70% of thar ot RC wall and the anchorage of vertical reinforcing bar welded to C-shaped steel beam needs to be improved.

An Investigation of Downcomer Boiling Effects During Reflood Phase Using TRAC-M Code

  • Chon Woo Chong;Lee Jae Hoon;Lee Sang Jong
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.5
    • /
    • pp.1182-1193
    • /
    • 2005
  • The capability of TRAC-M code to predict downcomer boiling effect during reflood phase in postulated PWR LOCA is evaluated using the results of downcomer effective water head and Cylindrical Core Test Facility (CCTF) experiments, which were performed at JAERI. With a full height downcomer simulator, effective water head experiment was carried out to investigate the applicability of the TRAC-M best estimate LOCA code to evaluate the effective water head with superheated wall temperature in downcomer. In order to clarify the effect of the initial superheat of the downcomer wall on the system and the core cooling behaviors during the reflood phase, two sets of analysis were also performed with a CCTF. Results show that TRAC­M code tends to under-predict downcomer effective water head and core differential pressure. However, the code results show a good agreement with the experimental results in downcomer temperature, heat flux and pressure. Finally, both experiment and calculation showed that the downcomer water head with the superheated downcomer wall is lower than that of the saturated wall temperature.

Structural Behavior Characteristics Evaluation of Shear Wall Outrigger System Subject to Horizontal Loads (수평하중을 받는 전단벽 아웃리거 시스템의 거동특성 평가)

  • Kim, Ho-Soo;Lee, Han-Joo;Hong, Seok-Il;Lim, Young-Do
    • Proceeding of KASS Symposium
    • /
    • 2006.05a
    • /
    • pp.110-117
    • /
    • 2006
  • This study presents an effective stiffness-based optimal technique to consider floor rigid diaphragm action and a technique to evaluate the structural behavior characteristics and efficiency for tall shear wall outrigger system subject to horizontal loads. To this end, isoparametric plane stress element with rotational stiffness is used for shear wall element and stiffness gradient is calculated. Also, the approximation concept to solve effectively the large scaled problems, member grouping technique and resizing technique are considered. To verify the effectiveness and usefulness of this technique, the efficient evaluation method for three types of 50 story model with core and outrigger system is presented.

  • PDF

Efficient Three Dimensional Analysis of High-Rise Shear Wall Building with Openings (개구부가 있는 고층 벽식 구조물의 효율적인 3차원 해석)

  • 김현수;남궁계홍;이동근
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.15 no.2
    • /
    • pp.351-365
    • /
    • 2002
  • The box system that is composed only of reinforced concrete walls and slabs we adopted on many high-rise apartment buildings recently constructed in Korea. And the framed structure with shear wall core that can effectively resist horizontal forces is frequently adopted for the structural system for high-rise building structures. In these structures, a shear wall may have one or more openings for functional reasons. It is necessary to use subdivided finite elements for accurate analysis of the shear wall with openings. But it would take significant amount of computational time and memory if the entire building structure is subdivided into a finer mesh. An efficient analysis method that can be used regardless of the number, size and location of openings is proposed in this study. The analysis method uses super element, substructure, matrix condensation technique and fictitious beam technique. Three-dimensional analyses of the box system and the framed structure with shear wall core having various types of openings were performed to verify the efficiency of the proposed method. It was confirmed that the proposed method have outstanding accuracy with drastically reduced time and computer memory from the analyses of example structures.

Eccentric compressive behavior of novel composite walls with T-section

  • Qin, Ying;Chen, Xin;Xi, Wang;Zhu, Xingyu;Chen, Yuanze
    • Steel and Composite Structures
    • /
    • v.35 no.4
    • /
    • pp.495-508
    • /
    • 2020
  • Double skin composite walls are alternatives to concrete walls to resist gravity load in structures. The composite action between steel faceplates and concrete core largely depends on the internal mechanical connectors. This paper investigates the structural behavior of novel composite wall system with T section and under combined compressive force and bending moment. The truss connectors are used to bond the steel faceplates to concrete core. Four short specimens were designed and tested under eccentric compression. The influences of the thickness of steel faceplates, the truss spacing, and the thickness of web wall were discussed based on the test results. The N-M interaction curves by AISC 360, Eurocode 4, and CECS 159 were compared with the test data. It was found that AISC 360 provided the most reasonable predictions.

Several Issues Closely Related to Construction in the Structural Design of Wuhan Center

  • Jian, Zhou
    • International Journal of High-Rise Buildings
    • /
    • v.11 no.3
    • /
    • pp.189-196
    • /
    • 2022
  • The practical difficulties of construction will impose many restrictions on the structural design, and the construction method can also provide unexpected ideas for solving design problems. Through the discussion of three issues closely related to construction in the structural design of Wuhan Center, this paper illustrates the importance of in-depth consideration of the construction situations in the structural design stage. The topics of "Connection between Embedded Steel Plates in Steel Plate Composite Shear Wall" and "Connection Joint between Outrigger Truss and Core Wall" are about how to facilitate on-site construction by simplifying and optimizing detail design. The topic of "Adjusting Internal Force Distribution by Optimizing Construction Sequence" is about how to make the construction process a tool for structural design.