• 제목/요약/키워드: Core Stability

검색결과 650건 처리시간 0.023초

Steel Module-to-Concrete Core Connection Methods in High Rise Modular Buildings: A Critical Review

  • Poudel, Bishal;Lee, Seungtaek;Choi, Jin Ouk
    • 국제학술발표논문집
    • /
    • The 9th International Conference on Construction Engineering and Project Management
    • /
    • pp.571-578
    • /
    • 2022
  • Modularization in a high-rise building is different from a small building, as it is exposed to more lateral forces like wind and earthquakes. The integrity, robustness, and overall stability of the modules and their performance is based on the joining techniques and strong structural systems. High lateral stiff construction structures like concrete shear walls and frames, braced steel frames, and steel moment frames are used for the stability of high-rise modular buildings. Similarly, high-rise stick-built buildings have concrete cores and perimeter frames for lateral load strength and stiffness. Methods for general steel-concrete connections are available in many works of literature. However, there are few modular-related papers describing this connection system in modular buildings. This paper aims to review the various research and practice adopted for steel-to-concrete connections in construction and compare the methods between stick-built buildings and modular buildings. The literature review shows that the practice of steel module-to-concrete core connection in high-rise modular buildings is like outrigger beams-to-concrete core connection in stick-built framed buildings. This paper concludes that further studies are needed in developing proper guidelines for a steel module-to-concrete core connection system in high-rise modular buildings.

  • PDF

Stability of five layer sandwich beams - a nonlinear hypothesis

  • Smyczynski, Mikolaj J.;Magnucka-Blandzi, Ewa
    • Steel and Composite Structures
    • /
    • 제28권6호
    • /
    • pp.671-679
    • /
    • 2018
  • The paper is devoted to the stability analysis of a simply supported five layer sandwich beam. The beam consists of five layers: two metal faces, the metal foam core and two binding layers between faces and the core. The main goal is to elaborate a mathematical and numerical model of this beam. The beam is subjected to an axial compression. The nonlinear hypothesis of deformation of the cross section of the beam is formulated. Based on the Hamilton's principle the system of four stability equations is obtained. This system is approximately solved. Applying the Bubnov-Galerkin's method gives an ordinary differential equation of motion. The equation is then numerically processed. The equilibrium paths for a static and dynamic load are derived and the influence of the binding layers is considered. The main goal of the paper is an analytical description including the influence of binding layers on stability, especially on critical load, static and dynamic paths. Analytical solutions, in particular mathematical model are verified numerically and the results are compared with those obtained in experiments.

Lightweight Multicast Routing Based on Stable Core for MANETs

  • Al-Hemyari, Abdulmalek;Ismail, Mahamod;Hassan, Rosilah;Saeed, Sabri
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제8권12호
    • /
    • pp.4411-4431
    • /
    • 2014
  • Mobile ad hoc networks (MANETs) have recently gained increased interest due to the widespread use of smart mobile devices. Group communication applications, serving for better cooperation between subsets of business members, become more significant in the context of MANETs. Multicast routing mechanisms are very useful communication techniques for such group-oriented applications. This paper deals with multicast routing problems in terms of stability and scalability, using the concept of stable core. We propose LMRSC (Lightweight Multicast Routing Based on Stable Core), a lightweight multicast routing technique for MANETs, in order to avoid periodic flooding of the source messages throughout the network, and to increase the duration of multicast routes. LMRSC establishes and maintains mesh architecture for each multicast group member by dividing the network into several zones, where each zone elects the most stable node as its core. Node residual energy and node velocity are used to calculate the node stability factor. The proposed algorithm is simulated by using NS-2 simulation, and is compared with other multicast routing mechanisms: ODMRP and PUMA. Packet delivery ratio, multicast route lifetime, and control packet overhead are used as performance metrics. These metrics are measured by gradual increase of the node mobility, the number of sources, the group size and the number of groups. The simulation performance results indicate that the proposed algorithm outperforms other mechanisms in terms of routes stability and network density.

'코어(core)'근육에 대한 한의학적 소고(小考) (The Study of Core Muscle as Meridian Tendino-usculature)

  • 송윤경;임형호
    • 한방비만학회지
    • /
    • 제7권2호
    • /
    • pp.77-84
    • /
    • 2007
  • Obejectives : Slow-motion strengthening trainings build up muscles better than any other type of training, these exercises focus on balancing and strengthening the muscles in the anatomical center of the body - the core - which includes the back, hip and abdominal muscles. Methods : We had a concept of 'core', and compared core muscles with 12 meridian tendino-musculature based on Thomas Myers' myofascial meridian. Results : It has been suggested that the core muscles correspond to meridians of foot- three Yin and foot- three Yang. The study of core muscles strengthening exercise and movement therapy is requred.

  • PDF

Effects of virtual reality-based core stabilization exercise on upper extremity function, postural control, and depression in persons with stroke

  • Kim, Jee-Won;Kim, Jung-Hee;Lee, Byoung-Hee
    • Physical Therapy Rehabilitation Science
    • /
    • 제9권3호
    • /
    • pp.131-139
    • /
    • 2020
  • Objective: The purpose of this study was to evaluate the effect of virtual reality (VR)-based core stabilization exercise on upper extremity function, postural control, and depression among persons with stroke with hemiplegia. Design: Randomized controlled trial. Methods: This study was conducted with the inclusion of 24 participants and were randomly assigned to either the VR-based trunk stability exercise group (n=12) or control group (n=12). The VR-based trunk stability exercise group performed core stabilization exercises in a VR environment for 30 minutes. Meanwhile, the control group conducted general core stabilization exercises for 30 minutes. The participants trained 3 times a week for 4 weeks. The manual functional test (MFT), Box and Block Test (BBT), Berg Balance Scale (BBS), Trunk Impairment Scale (TIS), the Geriatric Depression Scale (GDS) were used to assess all participants before and after the intervention. Results: The VR-based core stabilization exercise group had a significant improvement in upper extremity function (MFT, BBT) and postural control (BBS) compared with the control group (p<0.05). The VR-based core stabilization exercise showed a significant difference after intervention in the TIS and GDS scores (p<0.05), but they did not significantly differ between the two groups. Conclusions: The result showed that VR-based core stabilization exercise can be effective in improving upper extremity function and postural control among patients with stroke more than the sole application of general physical therapy.

강남콩 잎의 노화에 있어서 식물 호르몬의 역할 (Role of Plant Hormones in the Senescing Detached Leaves of Phaseolus vulgaris)

  • 이동희;서영희;김영상
    • 생명과학회지
    • /
    • 제7권4호
    • /
    • pp.297-308
    • /
    • 1997
  • NAA, GA$_{3}$ 및 BA등의 식물 호르몬이 노화중인 강남콩 잎의 엽록소-단백질 복합체의 분해에 미치는 효과를 조사하였다. 노화의 대표적인 특징인 엽록소의 소실은 엽록소-단백질 복합체의 분해를 수반하였다. 암유도 노화과정동안, PSI 복합체는 급격히 감소한 반면 RC-Core3은 오히려 조화 중기까지 조금씩 증가하다가 이후 서서히 분해되었다. 그리고 LHCII는 노화 과정 후기부터 점진적으로 분해되었다. NAA와 GA$_{3}$는 노화동안 엽록소-단백질 복합체의 분해를 억제하는데 거의 영향을 미치지 못 하였다. 그러나 BA는 노화 과정동안 엽록소-단백질 복합체, 특히 RC-Core1, RC-Core2와 SC-1의 분해를 억제하는데 매우 효과적이었다. 한편 식물 호르몬과 광선의 동시 처리에 있어서, BA와 광선의 동시 처리는 노화 과정동안 엽록소-단백질 복합체, 특히 PSI, LHCII, RC-Core2, RC-Core3과 SC-1의 분해를 억제하는데 가장 효과적이었다. 이와 같은 결과에서 노화 과정동안 엽록소-단백질 복합체는 BA 혹은 광선의 단독 처리보다 BA와 광선의 동시 처리에 의하여 보다 높은 안정성을 가질 것으로 사료된다.

  • PDF

Poly(Styrene/Acrylate) Core-Shell 라텍스 입자의 제조와 물성에 관한 연구 (Preparation and Physical Properties of Poly(Styrene/Acrylate) Core-Shell Latex Particles)

  • 이경구;박근호
    • 한국응용과학기술학회지
    • /
    • 제20권1호
    • /
    • pp.27-32
    • /
    • 2003
  • The core-shell latex particles were prepared by sequential emulsion polymerization of alkyl methacrylate and styrene(ST) by using an water-soluble initiator(APS) after preparing monomer pre-emulsion in the presence of an anionic surfactant(SDBS). In organic/organic core-shell polymerization, the pre-emulsion method, which minimized required quantity of sulfactant, has been used to increase the conversion rate and the stability of core-shell latex particles as well as to reduce the formation of secondary particle that cause problems of soap-free emulsion during shell polymerization. We used several methods to observe the core-shell structure. The core-shell structure was studied by measuring pH change during hydrolysis by NaOH, glass transition temperature($T_g$) by differential scanning calorimeter(DSC), morphology of latex by transmission electron microscope(TEM) and change of particle size and distribution by a particle analyzer.

Thermal hydraulic analysis of core flow bypass in a typical research reactor

  • Ibrahim, Said M.A.;El-Morshedy, Salah El-Din;Abdelmaksoud, Abdelfatah
    • Nuclear Engineering and Technology
    • /
    • 제51권1호
    • /
    • pp.54-59
    • /
    • 2019
  • The main objective of nuclear reactor safety is to maintain the nuclear fuel in a thermally safe condition with enough safety margins during normal operation and anticipated operational occurrences. In this research, core flow bypass is studied under the conditions of the unavailability of safety systems. As core bypass occurs, the core flow rate is assumed to decrease exponentially with a time constant of 25 s to new steady state values of 20, 40, 60, and 80% of the nominal core flow rate. The thermal hydraulic code PARET is used through these calculations. Reactor thermal hydraulic stability is reported for all cases of core flow bypass.

Research on Preparation of Sheath-Core Bicomponent Composite Ion Exchange Fibers and Absorption Properties to Metal Ion

  • Ding, Zhi-Jia;Qi, Lu;Ye, Jian-Zhong
    • Macromolecular Research
    • /
    • 제16권1호
    • /
    • pp.21-30
    • /
    • 2008
  • Based on the sheath-core bicomponent composite fibers with modified polystyrene (PS) and the modified polypropylene (PP), composite fibers obtained were further cross-linked and sulphonated with chlorosulphonic acid to produce strong acidic cation ion exchange fibers. The structures of the fibers obtained were characterized using Fourier transform infrared (FT-IR) spectroscopy, differential scanning calorimetry (DSC) etc. The optimal technology of the fibers obtained is discussed. The static absorption capacity of the sheath-core bicomponent composite cation exchange fibers for $Zn^{2+}$, $Cu^{2+}$ was determined. The absorption kinetics and major factors affecting the absorption capacities of $Zn^{2+}$, $Cu^{2+}$ were studied, and its chemical stability and regenerating properties were probed. The results suggest that cation exchange fibers with better mechanical properties and higher exchange capability were obtained. Moreover, this type of ion exchange fiber has good absorption properties and working stability to various metal ions. Hence, they have higher practicability.

Stability of Retroviral Vectors Against Ultracentrifugation Is Determined by the Viral Internal Core and Envelope Proteins Used for Pseudotyping

  • Kim, Soo-hyun;Lim, Kwang-il
    • Molecules and Cells
    • /
    • 제40권5호
    • /
    • pp.339-345
    • /
    • 2017
  • Retroviral and lentiviral vectors are mostly pseudotyped and often purified and concentrated via ultracentrifugation. In this study, we quantified and compared the stabilities of retroviral [murine leukemia virus (MLV)-based] and lentiviral [human immunodeficiency virus (HIV)-1-based] vectors pseudotyped with relatively mechanically stable envelope proteins, vesicular stomatitis virus glycoproteins (VSVGs), and the influenza virus WSN strain envelope proteins against ultracentrifugation. Lentiviral genomic and functional particles were more stable than the corresponding retroviral particles against ultracentrifugation when pseudotyped with VSVGs. However, both retroviral and lentiviral particles were unstable when pseudotyped with the influenza virus WSN strain envelope proteins. Therefore, the stabilities of pseudotyped retroviral and lentiviral vectors against ultracentrifugation process are a function of not only the type of envelope proteins, but also the type of viral internal core (MLV or HIV-1 core). In addition, the fraction of functional viral particles among genomic viral particles greatly varied at times during packaging, depending on the type of envelope proteins used for pseudotyping and the viral internal core.