• Title/Summary/Keyword: Core Injection

Search Result 343, Processing Time 0.02 seconds

Evaluation of Hydrogeologic Seal Capacity of Mudstone in the Yeongil Group, Pohang Basin, Korea: Focusing on Mercury Intrusion Capillary Pressure Analysis (포항분지 영일층군 이암층의 수리지질학적 차폐능 평가: 수은 모세관 압입 시험의 결과 분석을 중심으로)

  • Kim, Seon-Ok;Wang, Sookyun;Lee, Minhee
    • Economic and Environmental Geology
    • /
    • v.53 no.1
    • /
    • pp.23-32
    • /
    • 2020
  • Geological CO2 sequestration is a global warming response technology to limit atmospheric emissions by injecting CO2 captured on a large scale into deep geological formations. The presented results concern mineralogical and hydrogeological investigations (FE-SEM, XRD, XRF, and MICP) of mudstone samples from drilling cores of the Pohang basin, which is the research area for the first demonstration-scale CO2 storage project in Korea. They aim to identify the mineral properties of the mudstone constituting the caprock and to quantitatively evaluate the hydrogeologic sealing capacity that directly affects the stability and reliability of geological CO2 storage. Mineralogical analysis showed that the mudstone samples are mainly composed of quartz, K-feldspar, plagioclase and a small amount of pyrite, calcite, clay minerals, etc. Mercury intrusion capillary pressure analysis also showed that the samples generally had uniform particle configurations and pore distribution and there was no distinct correlation between the estimated porosity and air permeability. The allowable CO2 column heights based on the estimated pore-entry pressures and breakthrough pressures were found to be significantly higher than the thickness of the targeting CO2 injection layer. These results showed that the mudstone layers in the Yeongil group, Pohang basin, Korea have sufficient sealing capacity to suppress the leakage of CO2 injected during the demonstration-scale CO2 storage project. It should be noticed, however, that the applicability of results and analyses in this study is limited by the lack of available samples. For rigorous assessment of the sealing efficiency for geological CO2 storage operations, significant efforts on collection and multi-aspect evaluation for core samples over entire caprock formations should be accompanied.

Identification of Conductive Fractures in Crystalline Recks (유동성 단열 파악을 위한 암반 내 단열특성 규명)

  • 채병곤;최영섭;이대하;김원영;이승구;김중렬
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.5 no.2
    • /
    • pp.88-100
    • /
    • 1998
  • Since fractures may serve as major conduits of groundwater flow in crystalline rocks, characterization of conductive fractures is especially important for interpretation of flow system. In this study, characterization of fractures to investigate hydraulically conductive fractures in gneisses at an abandoned mine area was performed. The orientation, width, length, movement sense, infilling materials, spacing, aperture, roughness of both joints and faults and intersection and connectivity to other joints were measured on outcrops. In addition, characteristics of subsurface fractures were examined by core logging in five boreholes, of which the orientations were acquired by acoustic televiewer logging from three boreholes. The dominant fracture sets were grouped from outcrops; GSet 1: N50-82$^{\circ}$E/55-90$^{\circ}$SE, GSet 2: N2-8$^{\circ}$E/56-86$^{\circ}$SE, GSet 3: N46-72$^{\circ}$W/60-85$^{\circ}$NE, GSet 4:Nl2-38$^{\circ}$W/15-40$^{\circ}$SW and from subsurface; HSet 1: N50-90$^{\circ}$E/55-90$^{\circ}$SE, HSet 2: N10-30$^{\circ}$E/50-70$^{\circ}$SE, HSet 3: N20-60$^{\circ}$W/50-80$^{\circ}$NE, HSet 4: N10-50$^{\circ}$E/$\leq$40$^{\circ}$NW. Among them, GSet 1, GSet 3 and HSet 1, HSet 3 are the most intensely developed fracture sets in the study area. The mean fracture spacings of HSet 1 are 30-47cm and code 1 fractures, such as faults and open fractures, comprise 21.0-42.9 percent of the whole fractures in each borehole. HSet 3 shows the mean fracture spacings of 55-57cm and the ratio of code 1 fractures is 15.4-26.9 percent. In spite of the mean fracture spacing of 239cm, code 1 fractures of HSet 4 have the highest ratio of 54.5 percent. From the fact that faults or open fractures have high hydraulic conductivity, it can be inferred that the three fracture sets of N55-85$^{\circ}$E/50-80$^{\circ}$SE, N20-60$^{\circ}$W/50-75$^{\circ}$NE and N10-30$^{\circ}$E/$\leq$30$^{\circ}$NW from a fracture system of relatively high conductivity. It is indirectly verified with geophysical loggings and constant injection tests performed in the boreholes.

  • PDF

Analysis of Groundwater Flow Characterization in Fractured Aquifer System (파쇄대 응회암 대수층의 지하수 유동 특성화 기법)

  • Kim Yong-Je;Kim Tae-Hee;Kim Kue-Young;Hwang Se-Ho;Chae Byung-Gon
    • Journal of Soil and Groundwater Environment
    • /
    • v.10 no.4
    • /
    • pp.33-44
    • /
    • 2005
  • On the basis of a stepwise and careful integration of various field and laboratory methods the analysis of groundwater flow characterization was performed with five boreholes (BH-1, -2, -3, -4, -5) on a pilot site of Natural Forest Park in Guemsan-gun, Chungcheongbook-do, Korea. The regional lineaments of NW-SE are primarily developed on the area, which results in the development of many fractures of NW-SE direction around boreholes made in the test site for the study. A series of surface geological survey, core logging, geophysical logging, tomography, tracer tests, and heat-pulse flowmeter logging were carried out to determine fracture characteristics and fracture connectivity between the boreholes. In the result of fracture connectivity analysis BH-1 the injection well has a poor connectivity with BH-2 and BH-3, whereas a good with BH-4 and BH-5. In order to analyse the hydraulic connectivity between BH-1 and BH-5, in particular, a conspicuous groundwater outflux in the depth of 12 m and influx in the depth of 65 m and 70 m, but partly in/outflux occurred in other depths in BH-5 were observed as pumping from BH-1. On the other hand, when pumping from BH-5 the strong outflux in the depths of 17 m and 70 m was occurred. The spatial connectivity between the boreholes was examined in the depth of 15 m, 67 m, and 71 m in BH-1 as well as in the depth of 15 m, 17 m, 22 m, 72 m, and 83 m in BH-5.