• 제목/요약/키워드: Core Injection

검색결과 347건 처리시간 0.019초

Gravity-Injection Core Cooling After a Loss-of-SDC Event n the YGN Units 3 & 4

  • Seul, Kwang-Woo;Bang, Young-Seok;Kim, Hho-Jung
    • Nuclear Engineering and Technology
    • /
    • 제31권5호
    • /
    • pp.476-485
    • /
    • 1999
  • In order to evaluate the gravity-injection capability to maintain core cooling after a loss-of-shutdown-cooling event during shutdown operation, the plant conditions of the Yong Gwang Units 3&4 were reviewed. The six cases of possible gravity-injection paths from the refueling water tank (RWT) were identified and the thermal-hydraulic analyses were performed using the RELAP5/MOD3.2 code. The core cooling capability was significantly dependent on the gravity-injection path, the RCS opening, and the injection rate. In the cases with the pressurizer manway opening higher than the RWT water level, the coolant was held up in the pressurizer and the system pressure continued increasing after gravity-injection. The gravity injection eventually stopped due to the high system pressure and the core was uncovered. In the cases with the injection path and opening on the same leg side, the core cooling was dependent on whether the water injected from the RWT passed the core region or not. However, in the cases with the injection path and opening on the different leg side, the system was well depressurized after gravity-injection and the core boiling was successfully prevented for a long-term transient. In addition, from the sensitivity study on the gravity-injection flow rate, it was found that about 54 kg/s of injection rate was required to maintain the core cooling and the core cooling could be provided for about 10.6 hours after event with that injection rate from the RWT. Those analysis results would provide useful information to operators coping with the event.

  • PDF

사출성형 CAE 프로그램을 이용한 코어 휨의 예측 (Prediction of Core Shift using Injection Molding CAE program)

  • 문정연;곽민혁;박태원;정영득
    • Design & Manufacturing
    • /
    • 제8권2호
    • /
    • pp.7-11
    • /
    • 2014
  • The Core-Shift is often generated on injection mold which have thin and long core. And Core-Shift brings out problems for thickness variation and product ejecting process. In this study, analysis of Core-Shift was performed according to change of materials of core(steel P-20, Be-Cu) and various polymers(PP, PC) by using MoldFolw MPI 6.1 which is commercial injection molding analysis program. As the results of analysis, the magnitude of Core-Shift was increased as being use polymer had lower fluidity and lower rigidity core. In the future, we will study the relationship between amount of Core-Shift and ejecting force.

  • PDF

75톤 1단 액체로켓엔진 지상시험에서 중앙 물분사가 후류에 미치는 영향 고찰 (A Study of Core Water Injection Effect Influencing Plume in 75 tf $1^{st}$ Stage Liquid Propellant Rocket Engine Ground Test)

  • 문윤완;설우석
    • 항공우주기술
    • /
    • 제10권1호
    • /
    • pp.129-135
    • /
    • 2011
  • 본 연구는 중앙 물분사 방식을 채택한 액체로켓엔진 후류의 냉각에 대해 전산유체역학을 통한 특성을 고찰하였다. 중앙 물분사 방식의 냉각은 측면 물분사 방식과는 달리, 잘 알려져 있지 않기 때문에 다양한 물분사량과 유량을 통해 효율적으로 후류를 냉각시킬 수 있는 조건을 찾았으며, 해석을 통해 후류의 변화 특성을 살펴보았다. 이로부터 물분사 유량이 총추진제 유량의 2배 이상, 위치는 L/De=1.2일 때가 적당함을 알 수 있었다.

다수 캐비티 사출금형에서 러너 코어핀이 충전불균형에 미치는 영향 (The Effects of Runner Core Pin on the Filling Imbalance Occurred in Multi Cavity Injection Mold)

  • 강철민;정영득;한규택
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.39-42
    • /
    • 2005
  • For mass production, usually injection mold has multi-cavity which is filled through geometrical balanced runner system. Despite geometrical balanced runner system, filling imbalances between cavity to cavity have always been observed. These filling imbalances are one of the most significant factors to affect quality of plastic parts when molding plastic parts in multi-cavity injection mold. Filling imbalances are results from non-symmetrical shear rate distribution within melt as it flows through the runner system. It has been possible to decrease filling imbalance by optimizing processing conditions, but it has not completely eliminated this phenomenon during injection molding processing. This paper presents a solution of these filling imbalances through using 'runner core pin'. The runner core pin which is developed in this study creates a symmetrical shear distribution within runner. As a result of using runner core pin, a remarkable improvement in reducing filling imbalance was confirmed.

  • PDF

코어백 방식을 이용한 동시사출 성형 공정 최적화 연구 (Optimization of Multi-component Injection Molding Process Based on Core-back System)

  • 최동조;박홍석
    • 한국자동차공학회논문집
    • /
    • 제17권2호
    • /
    • pp.67-74
    • /
    • 2009
  • Injection molding have been used for manufacturing various fields of automotive interior trims for years. The demands on the injection molding technique are grown with the further development of the automobile technique and the design presentations for cost reduction and environment-friendly. This paper shows that multi-component injection conditions are different from general injection, also shows how to optimize part design and mold design and how to manufacturing through the efficient use of multi-component injection in development process using core back system. To fulfill this purpose, all influential process parameters related to the quality of automobile parts were analyzed in terms of the correlation between them. Base on that, a innovative process will be developed by injection engineers to implement it in practice.

Comparative Experiments to Assess the Effects of Accumulator Nitrogen Injection on Passive Core Cooling During Small Break LOCA

  • Li, Yuquan;Hao, Botao;Zhong, Jia;Wang, Nan
    • Nuclear Engineering and Technology
    • /
    • 제49권1호
    • /
    • pp.54-70
    • /
    • 2017
  • The accumulator is a passive safety injection device for emergency core cooling systems. As an important safety feature for providing a high-speed injection flow to the core by compressed nitrogen gas pressure during a loss-of-coolant accident (LOCA), the accumulator injects its precharged nitrogen into the system after its coolant has been emptied. Attention has been drawn to the possible negative effects caused by such a nitrogen injection in passive safety nuclear power plants. Although some experimental work on the nitrogen injection has been done, there have been no comparative tests in which the effects on the system responses and the core safety have been clearly assessed. In this study, a new thermal hydraulic integral test facility-the advanced core-cooling mechanism experiment (ACME)-was designed and constructed to support the CAP1400 safety review. The ACME test facility was used to study the nitrogen injection effects on the system responses to the small break loss-of-coolant accident LOCA (SBLOCA) transient. Two comparison test groups-a 2-inch cold leg break and a double-ended direct-vessel-injection (DEDVI) line break-were conducted. Each group consists of a nitrogen injection test and a nitrogen isolation comparison test with the same break conditions. To assess the nitrogen injection effects, the experimental data that are representative of the system responses and the core safety were compared and analyzed. The results of the comparison show that the effects of nitrogen injection on system responses and core safety are significantly different between the 2-inch and DEDVI breaks. The mechanisms of the different effects on the transient were also investigated. The amount of nitrogen injected, along with its heat absorption, was likewise evaluated in order to assess its effect on the system depressurization process. The results of the comparison and analyses in this study are important for recognizing and understanding the potential negative effects on the passive core cooling performance caused by nitrogen injection during the SBLOCA transient.

사출성형해석을 이용한 HEV/EV 구동모터 회전자 철심에 관한 실험적 연구 (An Experimental Study on the HEV/EV Traction Motor Rotor Core in Injection Molding Analysis)

  • 홍경일;정현석;최계광;김세환;임세종
    • Design & Manufacturing
    • /
    • 제9권1호
    • /
    • pp.9-13
    • /
    • 2015
  • The HEV/EV Traction Motor Core manufacturing technology is a core component of Traction Motor Core is a key technology for the manufacture of eco-friendly automotive industry is essential for the competitiveness of the country must obtain the technology. This study was performed to develop a Rotor Core of the HEV/EV Traction Motor using the first time in Korea multi-gate BMC injection molding technique. Executed by the experiment of this study are as follows. Study 1: Developed a multi-gate BMC injection mold for the magnet fixed to the Rotor Core. Study 2: Developed a production implementation and manufacturing technology of the Rotor Core. In this study, the develop products and manufacturing technologies implemented by the BMC injection mold development for Magnet fixed to the Rotor Core and the results are discussed.

  • PDF

샌드위치 사출성형의 충전 공정 해석에 대한 수치모사 연구 (A Numerical Study of Sandwich Injection Mold Filling Process)

  • 송효준;이승종
    • 유변학
    • /
    • 제11권2호
    • /
    • pp.159-167
    • /
    • 1999
  • 샌드위치 사출성형 공정은 기존의 사출성형 공정이 가지지 못하는 여러 장점들로 인해 최근 산업적으로 주목 받고 있는 고분자 가공 공정이다. 이 공정의 해석적인 접근은 거의 불가능하므로, 본 연구에서는 수치모사를 통해서 샌드위치 사출성형의 충전 공정을 연구하였다. 수치모사는 기본적으로 유한요소법을 사용하였고 Flow Analysis Network(FAN)/관할체적(Control Volume)법 등을 함께 이용하였다. 그리고 skin polymer의 선단을 확인할 수 있는 기존의 충전율 변수와 함께 skin polymer와 core polymer의 경계를 표시하는 새로운 충전율 변수를 도입하였고 이것을 이용하여 core polymer의 선단을 추적하였다. 새로운 충전율 변수는 두께 방향으로 온도장을 풀기 위해 나눈 각 층에서 정의되었다. 수치모사에 사용된 skin polymer와 core polymer로는 물성이 다른 두 고분자 물질을 주입시켜서 나타나는 충전 형태를 비교했다. 즉, 점도 상수, power-law 지수 등과 같은 유변 물성이 다른 두 고분자 물질을 충전시키기 위해 공정상 필요한 입구에서의 압력 등을 계산했으며 나중에 들어가게 되는 core polymer의 충전 완료 후 금형 내에서의 두께 방향과 흐름 방향으로의 분포 등을 구하였다. 또한 실제 공정 상에서 가공조건에 해당되는 switchover time과 벽 온도 등의 조건을 바꿔가면서 수치모사를 진행하였다. 사례 연구를 통하여 얻어진 물성과 가공 조건에 따른 core polymer의 충전 형태와 입구에서의 압력 등은 샌드위치 사출성형의 산업적 이용에 매우 유용하게 사용될 수 있다.

  • PDF

다수 캐비티 사출금형에서 균형 충전용 러너 시스템 개발 (Development of Runner System for Filling Balance in Multi Cavity Injection Mold)

  • 정영득
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2005년도 금형가공,미세가공,플라스틱가공 공동 심포지엄
    • /
    • pp.13-16
    • /
    • 2005
  • For mass production, usually injection mold has multi-cavity which is filled through geometrical balanced runner system. Despite geometrical balanced runner system, filling imbalances between cavity to cavity have always been observed. These filing imbalances are one of the most significant factors to affect quality of plastic parts when molding plastic parts in multi-cavity injection mold. Filling imbalances are results from non-symmetrical shear rate distribution within melt as it flows through the runner system. It has been possible to decrease filling imbalance by optimizing processing conditions, but it has not completely eliminated this phenomenon during injection molding processing. This paper presents a solution of these filling imbalances through using 'runner core pin'. The runner core pin which is developed in this study creates a symmetrical shear distribution within runner. As a result of using runner core pin, a remarkable improvement in reducing filling imbalance was confirmed.

  • PDF

Multi-cavity 프리폼 사출 금형 코어의 표면 품질 및 균일도 향상을 위한 연마 자동화 기구 개발 (A development of automated polishing apparatus for surface quality and uniformity of multi-cavity preform injection mold core)

  • 이정원;서금희;윤길상
    • Design & Manufacturing
    • /
    • 제8권2호
    • /
    • pp.41-45
    • /
    • 2014
  • Automated polishing apparatus based on the research have been developed. The research is improvement of polishing process for surface quality and uniformity improvement of preform injection mold core. Surface quality of preform core have influence on ejecting and product quality after injection molding. Thus, the current being made by hand to automate the polishing process, the surface of the preform to improve the quality and uniformity improvement. First made a division by analyzing manual process a step-by-step. And draw a mechanism for converting mechanical movement. Automated polishing apparatus for preform core was developed, through which shortens production time and were able to secure the safety of the worker.

  • PDF