• Title/Summary/Keyword: Core Facility

Search Result 328, Processing Time 0.023 seconds

TC1 (C8orf4) is involved in ERK1/2 pathway-regulated G1- to S-phase transition

  • Wang, Yi-Dong;Bian, Guo-Hui;Lv, Xiao-Yan;Zheng, Rong;Sun, Huan;Zhang, Zheng;Chen, Ye;Li, Qin-Wei;Xiao, Yan;Yang, Qiu-Tan;Ai, Jian-Zhong;Wei, Yu-Quan;Zhou, Qin
    • BMB Reports
    • /
    • v.41 no.10
    • /
    • pp.733-738
    • /
    • 2008
  • Although previous studies have implicated a role for TC1 (C8orf4) in cancer cell proliferation, the molecular mechanism of its action is still largely unclear. In this study, we showed, for the first time, that the mRNA levels of TC1 were upregulated by mitogens (FBS/thrombin) and at least partially, through the ERK1/2 signaling pathway. Interestingly, the over-expression of TC1 promoted the $G_1$- to S-phase transition of the cell cycle, which was delayed by the deficiency of ERK1/2 signaling in fibroblast cells. Furthermore, the luciferase reporter assay indicated that the over-expression of TC1 significantly increased Cyclin D1 promoter-driven luciferase activity. Taken together, our findings revealed that TC1 was involved in the mitogen-activated ERK1/2 signaling pathway and positively regulated $G_1$- to S-phase transition of the cell cycle. Our results may provide a novel mechanism of the role of TC1 in the regulation of cell proliferation.

A Study on Core Functions of Building Maintenance using BIM by Delphi Survey (델파이조사를 통한 BIM을 이용한 건축물 유지관리 요소 기능)

  • Won, Ho-Sik;Kim, Soon-Seok;Seo, Deok-Seok
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.05a
    • /
    • pp.259-260
    • /
    • 2015
  • In this paper, for deriving core function requirements of facility maintenance using BIM(Building Information Modeling) customized surveys were conducted with 30 facility managers during 6 momths from July 2014. As a result, 19 core function requirements for efficient facility maintenance are drawn. The core of Building facility management function is that opinions of facilities maintenance managers should be fully reflected than that of BIM experts. In the future, the development of maintenance programs based on BIM should be made fully by reflecting the opinions of building facility managers on the basis of this questionnaire survey results.

  • PDF

The Analysis of Flow Distribution in the Core Channel of the HANARO Flow Simulated Test Facility (하나로 유동모의 시험설비의 노심채널 유동분포 해석)

  • Park Y C.;Kim K. R.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2004.10a
    • /
    • pp.151-154
    • /
    • 2004
  • The HANARO, a multi-purpose research reactor of 30 MWth open-tank-in-pool type, has been under normal operation since its initial criticality in February, 1995. Many experiments should be safely performed to activate the utilization of the HANARO. A flow simulated test facility has been developed for the verification of structural integrity of those experimental facilities prior to loading In the HANARO. This test facility is composed of three major parts; a half-core structure assembly, flow circulation system and support system. The half-core structure assembly is composed of plenum, grid plate, core channel with flow tubes, chimney and dummy pool. The flow channels are to be filled with flow orifices to simulate similar flow characteristics to the HANARO. This paper describes an analysis of the flow distribution of the cote channel and compares with the test results. As results, the analysis showed similar flow characteristics compared with those in the test results.

  • PDF

The Analysis of Flow Circulation System for HANARO Flow Simulated Test Facility (하나로 유동모의 설비의 유체순환계통 해석)

  • Park, Yong-Chul
    • 유체기계공업학회:학술대회논문집
    • /
    • 2002.12a
    • /
    • pp.419-424
    • /
    • 2002
  • The HANARO, a multi-purpose research reactor of 30 MWth open-tank-in-pool type, has been under normal operation since its initial criticality In February, 1995. Many experiments should be safely performed to activate the utilization of the HANARO. A flow simulation facility is being developed for the endurance test of reactivity control units for extended life times and the verification of structural integrity of those experimental facilities prior to loading in the HANARO. This test facility is composed of three major parts; a half-core structure assembly, flow circulation system and support system. The flow circulation system is composed of a circulation pump, a core flow pipe, a core bypass flow pipe and instruments. The system is to be filled with de-mineralized water and the flow should be met the design flow to simulate similar flow characteristics in the core channel of the half-core test facility to the HANARO. This paper, therefore, describes an analytical analysis to study the flow behavior of the system. The computational flow analysis has been performed for the verification of system pressure variation through the three-dimensional analysis program with standard k-$\epsilon$ turbulence model and for the verification of the structural piping integrity through the finite element method. The results of the analysis are satisfied the design requirements and structural piping integrity of flow circulation system.

  • PDF

FT-IR analysis of flame resistant chemical mixture

  • Kim, Younsu;Seo, Jihyung;Choe, Yoong Kee;Sohn, Youngku;Kim, Jeongkwon
    • Analytical Science and Technology
    • /
    • v.34 no.1
    • /
    • pp.17-22
    • /
    • 2021
  • In this study, flame retardant mixtures of decabromodiphenylethane (DBDPE) and Sb2O3 were analyzed using Fourier transform infrared (FT-IR) spectroscopy. The experimentally obtained wavenumbers of DBDPE and Sb2O3 were 1321 and 949 cm-1, respectively, whereas those obtained by theoretical calculation were 1370 and 818 cm-1, respectively. Strong correlation was observed between the mixing molar ratios and observed peak area ratios, suggesting that FT-IR analysis can be used to obtain relative amounts of the individual components of flame retardant mixture.

Three-Dimensional Skin Tissue Printing with Human Skin Cell Lines and Mouse Skin-Derived Epidermal and Dermal Cells

  • Jin, Soojung;Oh, You Na;Son, Yu Ri;Kwon, Boguen;Park, Jung-ha;Gang, Min jeong;Kim, Byung Woo;Kwon, Hyun Ju
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.2
    • /
    • pp.238-247
    • /
    • 2022
  • Since the skin covers most surfaces of the body, it is susceptible to damage, which can be fatal depending on the degree of injury to the skin because it defends against external attack and protects internal structures. Various types of artificial skin are being studied for transplantation to repair damaged skin, and recently, the production of replaceable skin using three-dimensional (3D) bioprinting technology has also been investigated. In this study, skin tissue was produced using a 3D bioprinter with human skin cell lines and cells extracted from mouse skin, and the printing conditions were optimized. Gelatin was used as a bioink, and fibrinogen and alginate were used for tissue hardening after printing. Printed skin tissue maintained a survival rate of 90% or more when cultured for 14 days. Culture conditions were established using 8 mM calcium chloride treatment and the skin tissue was exposed to air to optimize epidermal cell differentiation. The skin tissue was cultured for 14 days after differentiation induction by this optimized culture method, and immunofluorescent staining was performed using epidermal cell differentiation markers to investigate whether the epidermal cells had differentiated. After differentiation, loricrin, which is normally found in terminally differentiated epidermal cells, was observed in the cells at the tip of the epidermal layer, and cytokeratin 14 was expressed in the lower cells of the epidermis layer. Collectively, this study may provide optimized conditions for bioprinting and keratinization for three-dimensional skin production.

The Analysis for Flow Circulation System in HANARO Flow Simulation Facility (하나로 유동 모의 설비의 유체순환계통 해석)

  • Park, Yong-Chul
    • The KSFM Journal of Fluid Machinery
    • /
    • v.7 no.1 s.22
    • /
    • pp.30-35
    • /
    • 2004
  • The HANARO, a multi-purpose research reactor of 30 MWth open-tank-in-pool type, has been under normal operation since its initial criticality in February, 1995. Many experiments should be safely performed to activate the utilization of the HANARO. HANARO flow simulation facility is being developed for the endurance test of reactivity control units for extended life time and the verification of structural integrity of those experimental equipments prior to loading in the HANARO. This facility is composed of three major parts; a half-core structure assembly, a flow circulation system and a support system. The flow circulation system is composed of a circulation pump, a core flow piping, a core bypass flow piping and instruments. The system is to be filled with de-mineralized water and the flow should be met the design requirements to simulate a similar flow characteristics in the core channel of the half-core structure assembly to the HANARO. This paper, therefore, presents an analytical analysis to study the flow behavior of the system. Computational flow analysis has been performed for the verification of system pressure variation through the three-dimensional analysis program with the standard $k-{\epsilon}$ turbulence model and for the verification of the structural piping integrity through the finite element method. According to the analysis results, it could be said that the design requirements and the structural piping integrity of the flow circulation system are satisfied.

Research Infrastructure Foundation for Core-technology Incubation of Radiation Detection System

  • Kim, Han Soo;Ha, Jang Ho;Kim, Young Soo;Cha, Hyung Ki
    • Journal of Radiation Industry
    • /
    • v.6 no.1
    • /
    • pp.67-73
    • /
    • 2012
  • The development of radiation detection systems mainly consist of two parts-radiation detector fabrication including material development, and its appropriate electronics development. For the core-technology incubation of a radiation detection system, radiation fabrication and an evaluation facility are scheduled to be founded at the RFT (Radiation Fusion Technology) Center at KAERI (Korea Atomic Energy Research Institute) by 2015. This facility is utilized for the development and incubation of bottleneck-technologies to accelerate the industrialization of a radiation detection system in the industrial, medical, and radiation security fields. This facility is also utilized for researchers to develop next-generation radiation detection instruments. In this paper, the establishment of core-technology development is introduced and its technological mission is addressed.

Modeling and analysis of selected organization for economic cooperation and development PKL-3 station blackout experiments using TRACE

  • Mukin, Roman;Clifford, Ivor;Zerkak, Omar;Ferroukhi, Hakim
    • Nuclear Engineering and Technology
    • /
    • v.50 no.3
    • /
    • pp.356-367
    • /
    • 2018
  • A series of tests dedicated to station blackout (SBO) accident scenarios have been recently performed at the $Prim{\ddot{a}}rkreislauf-Versuchsanlage$ (primary coolant loop test facility; PKL) facility in the framework of the OECD/NEA PKL-3 project. These investigations address current safety issues related to beyond design basis accident transients with significant core heat up. This work presents a detailed analysis using the best estimate thermal-hydraulic code TRACE (v5.0 Patch4) of different SBO scenarios conducted at the PKL facility; failures of high- and low-pressure safety injection systems together with steam generator (SG) feedwater supply are considered, thus calling for adequate accident management actions and timely implementation of alternative emergency cooling procedures to prevent core meltdown. The presented analysis evaluates the capability of the applied TRACE model of the PKL facility to correctly capture the sequences of events in the different SBO scenarios, namely the SBO tests H2.1, H2.2 run 1 and H2.2 run 2, including symmetric or asymmetric secondary side depressurization, primary side depressurization, accumulator (ACC) injection in the cold legs and secondary side feeding with mobile pump and/or primary side emergency core coolant injection from the fuel pool cooling pump. This study is focused specifically on the prediction of the core exit temperature, which drives the execution of the most relevant accident management actions. This work presents, in particular, the key improvements made to the TRACE model that helped to improve the code predictions, including the modeling of dynamical heat losses, the nodalization of SGs' heat exchanger tubes and the ACCs. Another relevant aspect of this work is to evaluate how well the model simulations of the three different scenarios qualitatively and quantitatively capture the trends and results exhibited by the actual experiments. For instance, how the number of SGs considered for secondary side depressurization affects the heat transfer from primary side; how the discharge capacity of the pressurizer relief valve affects the dynamics of the transient; how ACC initial pressure and nitrogen release affect the grace time between ACC injection and subsequent core heat up; and how well the alternative feeding modes of the secondary and/or primary side with mobile injection pumps affect core quenching and ensure stable long-term core cooling under controlled boiling conditions.

Implementation of the Shared Memory in the Dual Core System (Dual Core 시스템에서 Shared Memory 기능 구현)

  • Jang, Seung-Ju
    • The Journal of the Korea Contents Association
    • /
    • v.8 no.9
    • /
    • pp.27-33
    • /
    • 2008
  • This paper designs Shared Memory on the Dual Core system so that it operates a general System V IPC on the Linux O.S. Shared Memory is the technique that many processes can access to identical memory area. We treat Shared Memory which is SVR in a kernel step. We design a share memory facility of Linux operating system on the Dual Core System. In this paper the suggesting of share memory facility design plan in Dual Core system is enhance the performance in existing an unity processor system as a dual core practical use. We attemp a performance enhance in each CPU for each process which uses a share memory.