• Title/Summary/Keyword: Core Condition

Search Result 1,083, Processing Time 0.029 seconds

A Heuristic Application of Critical Power Ratio to Pressurized Water Reactor Core Design

  • Ahn, Seung-Hoon;Jeun, Gyoo-Dong
    • Nuclear Engineering and Technology
    • /
    • v.34 no.1
    • /
    • pp.68-79
    • /
    • 2002
  • The approach for evaluating the critical heat flux (CHF) margin using the departure from nucleate boiling ratio (DNBR) concept has been widely applied to PWR core design, while DNBR in this approach does not indicate appropriately the CHF margin in terms of the attainable power margin-to-CHF against a reactor core condition. The CHF power margin must be calculated by increasing power until the minimum DNBR reaches a DNBR limit. The Critical Power Ratio (CPR), defined as the ratio of the predicted CHF power to the operating power, is considered more reasonable for indicating the CHF margin and can be calculated by a CPR orrelation based on the heat balance of a test bundle. This approach yields directly the CHF power margin, but the calculated CPR must be corrected to compensate for many local effects of the actual core, which are not considered in the CHF test and analysis. In this paper, correction of the calculated CPR is made so that it may become equal to the DNB overpower margin. Exemplary calculations showed that the correction tends to be increased as power distribution is more distorted, but are not unduly large.

Effects of Cold Rolling Parameters on Sagging Behavior for Three Layer Al-Si/Al-Mn(Zn)/Al-Si Brazing Sheets

  • S.H. Lee;J.S. Yoon;M.S. Kim;D. Jung
    • Transactions of Materials Processing
    • /
    • v.8 no.3
    • /
    • pp.227-227
    • /
    • 1999
  • The effects of intermediate annealing (IA) and the final cold rolling (CR) condition on the microstructure and sagging resistance during brazing were investigated using three layer clad sheets composed of the Al-7.5 wt.%Si alloy (filler, thickness: 10 ㎛)/Al-1.3 wt.%Mn based alloy (core, 80㎛)/Al-7.5 wt.%Si alloy (filler, 10㎛). Also, the effect of 1.2∼2 wt.% Zn addition into the core on the sagging resistance of the clad sheets was determined. It was revealed that all the clad sheets fabricated by the optimum condition (IA at 690 K and CR to 20∼45%) show excellent sagging resistance with a limited erosion due to the formation of a coarsely recrystallized grain structure in the core during brazing. It was also revealed that the recrystallization behavior of the Al-1.3 wt.%Mn based alloy is hardly affected by the addition of 1.2-2 wt.%Zn during the brazing cycle. Therefore, the sagging resistance of the clad sheets is found to be governed not by the Zn content added in the A1-1.3wt.%Mn based core, but by the intermediate annealing and final cold rolling condition.

A Study on the Propagation Characteristics of a Trapezoidal-Shaped Segmented Core Single Mode Fiber (사다리꼴 분포를 갖는 segmented core 단일모드 광섬유의 전파특성에 대한 연구)

  • 김성근;최태일;최병하
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.17 no.8
    • /
    • pp.816-822
    • /
    • 1992
  • In this paper, propagation characteristics of trapezoidal-shaped segmented core single mode fibers is investigated theoretically as a function of relative Index difference ratio( =p) under the condition of zero dispersion at i=1.,isrm, and bending loss of trape zoidalshaped segmented core single mode fiber is greatly decreased less than that of conventional single mode fibers ( triangular Index, dual shape core). And mode field distribution In core Is confined 2H% stronger than that of a tapezoidal Index fiber In addition, the advantages of trapezoldal-shaped segmented core fibers are compared with t hose of conventional triangular -shaped segmented core fibers.

  • PDF

Failure Characteristics of Carbon/BMI Sandwich Composite Joint under Pull-out Loading (풀아웃 하중을 받는 카본/BMI 샌드위치 복합재 체결부 파손특성 연구)

  • Lee, Gyeong-Chan;Choi, Young-Ho;Lee, Kowan-Woo;Sim, Jae-Hoon;Jung, Young-In
    • Composites Research
    • /
    • v.30 no.2
    • /
    • pp.132-137
    • /
    • 2017
  • The purpose of this paper is to investigate failure characteristics of Carbon/BMI-Nomex honeycomb sandwich on design parameters. A total of 6 types sandwich specimens were manufactured according to core height, face thickness and density, and environmental condition were applied to evaluate temperature and humidity effects of one of these specimens. The test results show that the core shear buckling loads was commonly observed in all specimens except for the joint with density of $64kg/m^3$. After core shear buckling, however, the joint carried additional loads over the buckling loads and then finally failed in the upper face and lower face at the same time. In the case of specimen having high stiffness, the maximum failure load was low due to interfacial failure of the upper face and core without initial core shear buckling. The ETW1 and ETW2 conditions, which were carried out to evaluate the environmental condition of the sandwich specimen, show an initial failure mode which was significantly different from RTD condition. Also, the ETW2 condition with increased temperature under the same humidity shows that the core shear buckling load was 18% less than ETW1 condition.

Warping and Buckling Prediction Model of Wooden Hollow Core Flush Door due to Moisture Content Change (I) : Comparison of Prediction Model with Experimental Results (목제(木製) 프러쉬 문의 함수율 변동에 따른 틀어짐과 좌굴 예측모델 (I) : 예측모델과 실측치 비교)

  • Kang, Wook;Jung, Hee-Suk
    • Journal of the Korean Wood Science and Technology
    • /
    • v.27 no.3
    • /
    • pp.99-116
    • /
    • 1999
  • Wooden hollow core flush door is one of the main products of furniture manufacturing and woodworking industries. Warping and buckling of the door is serious problems in service. It has been reported that warping is caused by differences of physical and mechanical properties of face and back of skin panel for the door. This study focused on the prediction of warping and buckling phenomena of the flush door using numerical models. Predictions from the models were also compared with the experimental results obtained from the doors with plywood and hardboard skin panels under various environmental conditions. Three elastic constitutive models, so called elastic beam model, plate model and plate-buckling model, were employed to predict warping and buckling of the doors. It was observed that warping was more pronounced in low humidity condition than in high humidity condition. The plate model considering Poisson's effect was reliable to predict warping more closely than elastic beam model in low humidity condition. The plate-buckling model, however, was the best in the fitting of predictions with the experimental results under high humidity condition because buckling was developed in face and back of skin panel at that condition.

  • PDF

Study on Thermal Treatment of Hybrid Technical Yarns

  • Ishtiaque, S.M.;Das, A.
    • Fibers and Polymers
    • /
    • v.5 no.1
    • /
    • pp.25-30
    • /
    • 2004
  • The present paper reports the impact of thermal treatment on the characteristics of core-sheath type hybrid technical yarns. The core-sheath type hybrid yams are prepared using DREF-III technology. Polyester and glass multifilaments are used as core components whereas the cotton and polyester staple fibers are the sheath components wrapped around the core filament with different proportions to form a hybrid structure. The thermal treatment is carried out both in dry and in wet state under relaxed condition and the thermal shrinkage, sheath-slipping resistance and tensile and bending properties of hybrid yarns have been studied. Thermal treatment markedly increases the thermal shrinkage and sheath-slipping resistance of hybrid yarns with polyester multifilament in core, but insignificant effect for yarns with glass multifilament in core. Breaking elongation of hybrid yams with polyester multifilament in core increases with treatment temperature. The hybrid yarns with glass multifilament in core are least affected by thermal treatment.

Effect of Injector Geometry on Cryogenic Jet Flow (극저온 제트 유동에 대한 분사기 형상의 영향)

  • Cho, Seong-Ho;Park, Gu-Jeong;Khil, Tae-Ock;Yoon, Young-Bin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.4
    • /
    • pp.348-353
    • /
    • 2011
  • Characteristics of cryogenic single jet flow were investigated. Liquid nitrogen was injected into a high-pressure chamber and formed single jet. Ambient condition around jet was changed from subcritical to superctirical condition of nitrogen. Injector geometries also were changed. A shape of the jet and core diameter were measured by flow visualization technique, and core spreading angle was calculated. Flow instability was found at atmospheric pressure condition. As ambient pressure increased, core spreading angle was increased and maintained after certain pressure.

LINEAR PROGRAMMING APPROACH IN COOPERATIVE GAMES

  • Victor V.Zakharov;Kwon, O-Hun
    • Journal of the Korean Mathematical Society
    • /
    • v.34 no.2
    • /
    • pp.469-481
    • /
    • 1997
  • In this paper we consider TU-cooperative games in the form of characteristic function. We notice that if one uses the necessary and sufficient condition for the core to be not empty in a dual form, it may be used for selecting the final outcome in the core. Using the linear programming approach for constructing the subcore, which is a subset of the core, we represent it in a simple form. We consider reduced games due to Davis-Mashler, Moulin and Funaki and formulate the sufficient conditions for the subcore to be S-consistent.

  • PDF

Development of Electronic Compass Using 2-Axis Micro Fluxgate Sensor (2축 마이크로 플럭스게이트 센서 제작을 통한 전자 나침반 개발)

  • 박해석;심동식;나경원;황준식;최상언
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.52 no.9
    • /
    • pp.418-423
    • /
    • 2003
  • This paper describes an electronic compass using micromachined X- and Y-axis micro fluxgate sensors which were perpendicularly aligned each other to measure X- and Y-axis magnetic fields respectively. The fluxgate sensor was composed of rectangular-ring shaped magnetic core and solenoid excitation(49 turns) and pick-up(46 turns) coils. Excitation and pick-up coil patterns which were formed opposite to each other wound the magnetic core alternatively to improve the sensitivity and to excite the magnetic core in an optimal condition with reduced excitation current. The magnetic core has DC effective permeability of ~1000 and coercive field of ~0.1 Oe. The magnetic core is easily saturated due to the low coercive field and closed magnetic path for the excitation field. To decrease the difference of induced second harmonic voltages from X- and Y-axis, excitation condition of 2.8 $V_{P-P}$ and 1.2 MHz square wave was selected. Excellent linear response over the range of -100 $\mu$T to +100 $\mu$T was obtained with 210 V/T sensitivity. The size of each micro fluxgate sensor excluding pad region was about 2.6${\times}$1.7 $mm^2$ and the power consumption was estimated to be 14 mW.W.

Formation of Coatings on SKD11 Core Mold Steel by Plasma Electrolytic Oxidation (코어금형용강 SKD11의 플라즈마 전해산화에 의한 피막 형성)

  • Kim, S.M.;Lee, T.H.;Kang, S.J.;Cho, Y.H.;Koo, J.M.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.24 no.4
    • /
    • pp.209-216
    • /
    • 2011
  • Surface coatings were prepared on SKD11 core mold steel by plasma electrolytic oxidation (PEO). The coatings were investigated about the formation condition of core mold steel. SKD11 were coated by PEO in a mix solution of Sodium Aluminate $NaAlO_2$ (10 g/l), Sodium Silicate powder $Na_2SiO_3$ (0.5 g/l), Sodium tungstate dihydrate $Na_2WO_42H_2O$ (0.5 g/l) at less than $30^{\circ}C$. The electrical condition were voltage : 500~600 V; Pulse : 600~1800 Hz; current density 15~20 $A/dm^2$ various time : 3 min~40 min. The coatings surface morphology, cross-section, friction coefficient, hardness were investigated. The PEO coatings on SKD11 core mold steel showed the extended service life.